devingulliver commited on
Commit
5b05143
·
verified ·
1 Parent(s): b350065

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -148
app.py CHANGED
@@ -1,151 +1,12 @@
1
- # import all the libraries
2
- import math
3
- import numpy as np
4
- import scipy
5
- from PIL import Image
6
  import torch
7
- import torchvision.transforms as tforms
8
- from diffusers import DiffusionPipeline, UNet2DConditionModel, DDIMScheduler, DDIMInverseScheduler
9
- from diffusers.models import AutoencoderKL
10
- import gradio as gr
11
 
12
- # load SDXL pipeline
13
- vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
14
- unet = UNet2DConditionModel.from_pretrained("mhdang/dpo-sdxl-text2image-v1", subfolder="unet", torch_dtype=torch.float16)
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, vae=vae, torch_dtype=torch.float16)
16
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
17
- pipe = pipe.to("cuda")
 
18
 
19
- # watermarking helper functions. paraphrased from the reference impl of arXiv:2305.20030
20
-
21
- def circle_mask(size=128, r=16, x_offset=0, y_offset=0):
22
- x0 = y0 = size // 2
23
- x0 += x_offset
24
- y0 += y_offset
25
- y, x = np.ogrid[:size, :size]
26
- y = y[::-1]
27
- return ((x - x0)**2 + (y-y0)**2)<= r**2
28
-
29
- def get_pattern(shape, w_seed=999999):
30
- g = torch.Generator(device=pipe.device)
31
- g.manual_seed(w_seed)
32
- gt_init = pipe.prepare_latents(1, pipe.unet.in_channels,
33
- 1024, 1024,
34
- pipe.unet.dtype, pipe.device, g)
35
- gt_patch = torch.fft.fftshift(torch.fft.fft2(gt_init), dim=(-1, -2))
36
- # ring pattern. paper found this to be effective
37
- gt_patch_tmp = gt_patch.clone().detach()
38
- for i in range(shape[-1] // 2, 0, -1):
39
- tmp_mask = circle_mask(gt_init.shape[-1], r=i)
40
- tmp_mask = torch.tensor(tmp_mask)
41
- for j in range(gt_patch.shape[1]):
42
- gt_patch[:, j, tmp_mask] = gt_patch_tmp[0, j, 0, i].item()
43
-
44
- return gt_patch
45
-
46
- def transform_img(image):
47
- tform = tforms.Compose([tforms.Resize(1024),tforms.CenterCrop(1024),tforms.ToTensor()])
48
- image = tform(image)
49
- return 2.0 * image - 1.0
50
-
51
- # hyperparameters
52
- shape = (1, 4, 128, 128)
53
- w_seed = 7433 # TREE :)
54
- w_channel = 0
55
- w_radius = 16 # the suggested r from section 4.4 of paper
56
-
57
- # get w_key and w_mask
58
- np_mask = circle_mask(shape[-1], r=w_radius)
59
- torch_mask = torch.tensor(np_mask).to(pipe.device)
60
- w_mask = torch.zeros(shape, dtype=torch.bool).to(pipe.device)
61
- w_mask[:, w_channel] = torch_mask
62
- w_key = get_pattern(shape, w_seed=w_seed).to(pipe.device)
63
-
64
-
65
- def get_noise():
66
- # moved w_key and w_mask to globals
67
-
68
- # inject watermark
69
- init_latents = pipe.prepare_latents(1, pipe.unet.in_channels,
70
- 1024, 1024,
71
- pipe.unet.dtype, pipe.device, None)
72
- init_latents_fft = torch.fft.fftshift(torch.fft.fft2(init_latents), dim=(-1, -2))
73
- init_latents_fft[w_mask] = w_key[w_mask].clone()
74
- init_latents = torch.fft.ifft2(torch.fft.ifftshift(init_latents_fft, dim=(-1, -2))).real
75
- # hot fix to prevent out of bounds values. will "properly" fix this later
76
- init_latents[init_latents == float("Inf")] = 4
77
- init_latents[init_latents == float("-Inf")] = -4
78
-
79
- return init_latents
80
-
81
- def detect(image):
82
- # invert scheduler
83
- curr_scheduler = pipe.scheduler
84
- pipe.scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
85
-
86
- # ddim inversion
87
- img = transform_img(image).unsqueeze(0).to(pipe.unet.dtype).to(pipe.device)
88
- image_latents = pipe.vae.encode(img).latent_dist.mode() * 0.13025
89
- inverted_latents = pipe(prompt="", latents=image_latents, guidance_scale=1, num_inference_steps=50, output_type="latent")
90
- inverted_latents = inverted_latents.images
91
-
92
- # calculate p-value instead of detection threshold. more rigorous, plus we can do a non-boolean output
93
- inverted_latents_fft = torch.fft.fftshift(torch.fft.fft2(inverted_latents), dim=(-1, -2))[w_mask].flatten()
94
- target = w_key[w_mask].flatten()
95
- inverted_latents_fft = torch.concatenate([inverted_latents_fft.real, inverted_latents_fft.imag])
96
- target = torch.concatenate([target.real, target.imag])
97
-
98
- sigma = inverted_latents_fft.std()
99
- lamda = (target ** 2 / sigma ** 2).sum().item()
100
- x = (((inverted_latents_fft - target) / sigma) ** 2).sum().item()
101
- p_value = scipy.stats.ncx2.cdf(x=x, df=len(target), nc=lamda)
102
-
103
- # revert scheduler
104
- pipe.scheduler = curr_scheduler
105
-
106
- if p_value == 0:
107
- return 1.0
108
- else:
109
- return max(0.0, 1-1/math.log(5/p_value,10))
110
-
111
- def generate(prompt):
112
- return pipe(prompt=prompt, negative_prompt="monochrome", num_inference_steps=50, latents=get_noise()).images[0]
113
-
114
- # optimize for speed
115
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
116
- print(detect(generate("an astronaut riding a green horse"))) # warmup after jit
117
-
118
- # actual gradio demo
119
-
120
- def manager(input, progress=gr.Progress(track_tqdm=True)): # to prevent the queue from overloading
121
- if type(input) == str:
122
- return generate(input)
123
- elif type(input) == np.ndarray:
124
- image = Image.fromarray(input)
125
- percent = detect(image)
126
- return {"watermarked": percent, "not_watermarked": 1.0-percent}
127
-
128
- with gr.Blocks(theme=gr.themes.Soft(primary_hue="green",secondary_hue="green", font=gr.themes.GoogleFont("Fira Sans"))) as app:
129
- with gr.Row():
130
- gr.HTML('<center><p>Bad actors are using generative AI to destroy the livelihoods of real artists. We need transparency now.</p><h1><span style="font-size:1.5em">Introducing Dendrokronos 🌳</span></h1></center>')
131
- with gr.Row():
132
- with gr.Column():
133
- gr.Markdown("# Generate\nType a prompt and hit Go. Dendrokronos will generate an invisibly-watermarked image. \nYou can click the download button to save the finished image. Try it with the detector.")
134
- with gr.Group():
135
- with gr.Row():
136
- gen_in = gr.Textbox(max_lines=1, placeholder='try "a majestic tree at sunset, oil painting"', show_label=False, scale=4)
137
- gen_btn = gr.Button("Go", variant="primary", scale=0)
138
- gen_out = gr.Image(interactive=False, show_label=False)
139
- gen_btn.click(fn=manager, inputs=gen_in, outputs=gen_out)
140
- with gr.Column():
141
- gr.Markdown("# Detect\nUpload an image and hit Detect. Dendrokronos will predict the probability it was watermarked. \nNote: Dendrokronos can only detect its own watermark. It won't detect other AIs, such as DALL-E.")
142
- det_out = gr.Label(show_label=False)
143
- with gr.Group():
144
- det_btn = gr.Button("Detect", variant="primary")
145
- det_in = gr.Image(interactive=True, sources=["upload","clipboard"], show_label=False)
146
- det_btn.click(fn=manager, inputs=det_in, outputs=det_out)
147
- with gr.Row():
148
- gr.HTML('<center><h1>&nbsp;</h1>Acknowledgements: Dendrokronos uses <a href="https://huggingface.co/mhdang/dpo-sdxl-text2image-v1">SDXL DPO 1.0</a> for the underlying image generation and <a href="https://arxiv.org/abs/2305.20030">an algorithm by UMD researchers</a> for the watermark technology.<br />Dendrokronos is a project by Devin Gulliver.</center>')
149
-
150
- app.queue()
151
- app.launch(show_api=False)
 
 
 
 
 
 
1
  import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
 
 
 
3
 
4
+ quant_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["temporal_block"])
5
+ tokenizer = AutoTokenizer.from_pretrained("alpindale/recurrentgemma-9b-it")
6
+ model = AutoModelForCausalLM.from_pretrained(
7
+ "alpindale/recurrentgemma-9b-it",
8
+ device_map="auto", torch_dtype=torch.float16,
9
+ quantization_config=quant_config
10
+ )
11
 
12
+ model.push_to_hub("recurrentgemma-9b-it-8bit")