Spaces:
Running
on
A100
Running
on
A100
File size: 23,251 Bytes
f0fcc66 9e5447d f0fcc66 6165359 f0fcc66 ed34aa3 f0fcc66 6165359 ed34aa3 6febc7c 6165359 f0fcc66 e9b7b43 f0fcc66 6febc7c f0fcc66 e70b261 f0fcc66 6165359 f0fcc66 6febc7c f0fcc66 6febc7c f0fcc66 6165359 f0fcc66 e9b7b43 f0fcc66 e9b7b43 f0fcc66 ed34aa3 f0fcc66 ed34aa3 f0fcc66 ed34aa3 f0fcc66 e9b7b43 f0fcc66 6165359 f0fcc66 b64eca0 f0fcc66 b64eca0 f0fcc66 e9b7b43 f0fcc66 e9b7b43 f0fcc66 f20b5cb f0fcc66 ed34aa3 f0fcc66 6165359 f0fcc66 6165359 f0fcc66 6165359 f0fcc66 9e5447d 6165359 ed34aa3 f20b5cb 9e5447d ed34aa3 f20b5cb 9e5447d ed34aa3 9e5447d f0fcc66 6165359 e9b7b43 6165359 fd31dbe f0fcc66 6165359 ed34aa3 6165359 f20b5cb 6165359 ed34aa3 6165359 ed34aa3 6165359 e9b7b43 6165359 ed34aa3 6165359 ed34aa3 6165359 f20b5cb e9b7b43 f20b5cb 6165359 e9b7b43 6165359 ed34aa3 6165359 e9b7b43 6165359 ed34aa3 e9b7b43 6165359 e9b7b43 6165359 e9b7b43 6165359 e9b7b43 6165359 ed34aa3 e9b7b43 ed34aa3 e9b7b43 ed34aa3 6165359 ed34aa3 e9b7b43 6165359 e9b7b43 6165359 ed34aa3 e9b7b43 ed34aa3 e9b7b43 ed34aa3 6165359 e9b7b43 6165359 e9b7b43 6165359 e9b7b43 6165359 e9b7b43 6165359 e9b7b43 6165359 e9b7b43 6165359 ed34aa3 6165359 ed34aa3 6165359 ed34aa3 e9b7b43 ed34aa3 e9b7b43 ed34aa3 f0fcc66 9e5447d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import torch
import gradio as gr
from diffusers import FluxPipeline, FluxTransformer2DModel
import gc
import random
import glob
from pathlib import Path
from PIL import Image
import os
import time
import json
from fasteners import InterProcessLock
import spaces
from datasets import Dataset, Image as HFImage, load_dataset
from datasets import Features, Value
from datasets import concatenate_datasets
from datetime import datetime
AGG_FILE = Path(__file__).parent / "agg_stats.json"
LOCK_FILE = AGG_FILE.with_suffix(".lock")
def _load_agg_stats() -> dict:
if AGG_FILE.exists():
with open(AGG_FILE, "r") as f:
try:
return json.load(f)
except json.JSONDecodeError:
print(f"Warning: {AGG_FILE} is corrupted. Starting with empty stats.")
return {"8-bit bnb": {"attempts": 0, "correct": 0}, "4-bit bnb": {"attempts": 0, "correct": 0}}
return {"8-bit bnb": {"attempts": 157, "correct": 74},
"4-bit bnb": {"attempts": 159, "correct": 78}}
def _save_agg_stats(stats: dict) -> None:
with InterProcessLock(str(LOCK_FILE)):
with open(AGG_FILE, "w") as f:
json.dump(stats, f, indent=2)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
DEFAULT_GUIDANCE_SCALE = 3.5
DEFAULT_NUM_INFERENCE_STEPS = 15
DEFAULT_MAX_SEQUENCE_LENGTH = 512
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
HF_DATASET_REPO_ID = "diffusers/flux-quant-challenge-submissions"
CACHED_PIPES = {}
def load_bf16_pipeline():
print("Loading BF16 pipeline...")
MODEL_ID = "black-forest-labs/FLUX.1-dev"
if MODEL_ID in CACHED_PIPES:
return CACHED_PIPES[MODEL_ID]
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
# pipe.to(DEVICE)
pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPES[MODEL_ID] = pipe
return pipe
except Exception as e:
print(f"Error loading BF16 pipeline: {e}")
raise
def load_bnb_8bit_pipeline():
print("Loading 8-bit BNB pipeline...")
MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
if MODEL_ID in CACHED_PIPES:
return CACHED_PIPES[MODEL_ID]
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16
)
# pipe.to(DEVICE)
pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPES[MODEL_ID] = pipe
return pipe
except Exception as e:
print(f"Error loading 8-bit BNB pipeline: {e}")
raise
def load_bnb_4bit_pipeline():
print("Loading 4-bit BNB pipeline...")
MODEL_ID = "derekl35/FLUX.1-dev-nf4"
if MODEL_ID in CACHED_PIPES:
return CACHED_PIPES[MODEL_ID]
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16
)
# pipe.to(DEVICE)
pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPES[MODEL_ID] = pipe
return pipe
except Exception as e:
print(f"Error loading 4-bit BNB pipeline: {e}")
raise
@spaces.GPU(duration=240)
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
if not prompt:
return None, {}, gr.update(value="Please enter a prompt.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
if not quantization_choice:
return None, {}, gr.update(value="Please select a quantization method.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
if quantization_choice == "8-bit bnb":
quantized_load_func = load_bnb_8bit_pipeline
quantized_label = "Quantized (8-bit bnb)"
elif quantization_choice == "4-bit bnb":
quantized_load_func = load_bnb_4bit_pipeline
quantized_label = "Quantized (4-bit bnb)"
else:
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
model_configs = [
("Original", load_bf16_pipeline),
(quantized_label, quantized_load_func),
]
results = []
pipe_kwargs = {
"prompt": prompt,
"height": DEFAULT_HEIGHT,
"width": DEFAULT_WIDTH,
"guidance_scale": DEFAULT_GUIDANCE_SCALE,
"num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
}
seed = random.getrandbits(64)
print(f"Using seed: {seed}")
for i, (label, load_func) in enumerate(model_configs):
progress(i / len(model_configs), desc=f"Loading {label} model...")
print(f"\n--- Loading {label} Model ---")
load_start_time = time.time()
try:
current_pipe = load_func()
load_end_time = time.time()
print(f"{label} model loaded in {load_end_time - load_start_time:.2f} seconds.")
progress((i + 0.5) / len(model_configs), desc=f"Generating with {label} model...")
print(f"--- Generating with {label} Model ---")
gen_start_time = time.time()
image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images
image = image_list[0]
gen_end_time = time.time()
results.append({"label": label, "image": image})
print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"Memory reserved: {mem_reserved:.2f} GB")
except Exception as e:
print(f"Error during {label} model processing: {e}")
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
if len(results) != len(model_configs):
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)
shuffled_results = results.copy()
random.shuffle(shuffled_results)
shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
print("Correct mapping (hidden):", correct_mapping)
return shuffled_data_for_gallery, correct_mapping, prompt, seed, results, "Generation complete! Make your guess.", None, gr.update(interactive=True), gr.update(interactive=True)
def check_guess(user_guess, correct_mapping_state):
if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
return "Please generate images first (state is empty or invalid)."
if user_guess is None:
return "Please select which image you think is quantized."
quantized_image_index = -1
quantized_label_actual = ""
for index, label in correct_mapping_state.items():
if "Quantized" in label:
quantized_image_index = index
quantized_label_actual = label
break
if quantized_image_index == -1:
return "Error: Could not find the quantized image in the mapping data."
correct_guess_label = f"Image {quantized_image_index + 1}"
if user_guess == correct_guess_label:
feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
else:
feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
return feedback
EXAMPLE_DIR = Path(__file__).parent / "examples"
EXAMPLES = [
{
"prompt": "A photorealistic portrait of an astronaut on Mars",
"files": ["astronauts_seed_6456306350371904162.png", "astronauts_bnb_8bit.png"],
"quantized_idx": 1,
"quant_method": "8-bit bnb",
"summary": "Astronaut on Mars",
},
{
"prompt": "Water-color painting of a cat wearing sunglasses",
"files": ["watercolor_cat_bnb_8bit.png", "watercolor_cat_seed_14269059182221286790.png"],
"quantized_idx": 0,
"quant_method": "8-bit bnb",
"summary": "Cat with Sunglasses",
},
# {
# "prompt": "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8-K",
# "files": ["cyber_city_q.jpg", "cyber_city.jpg"],
# "quantized_idx": 0,
# },
]
def load_example(idx):
ex = EXAMPLES[idx]
imgs = [Image.open(EXAMPLE_DIR / f) for f in ex["files"]]
gallery_items = [(img, f"Image {i+1}") for i, img in enumerate(imgs)]
mapping = {i: (f"Quantized ({ex['quant_method']})" if i == ex["quantized_idx"] else "Original")
for i in range(2)}
return gallery_items, mapping, f"{ex['prompt']}"
def _accuracy_string(correct: int, attempts: int) -> tuple[str, float]:
if attempts:
pct = 100 * correct / attempts
return f"{pct:.1f}%", pct
return "N/A", -1.0
def update_leaderboards_data():
agg = _load_agg_stats()
quant_rows = []
for method, stats in agg.items():
acc_str, acc_val = _accuracy_string(stats["correct"], stats["attempts"])
quant_rows.append([
method,
stats["correct"],
stats["attempts"],
acc_str
])
quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9)
return quant_rows
quant_df = gr.DataFrame(
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
interactive=False, col_count=(4, "fixed")
)
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
gr.Markdown("# FLUX Model Quantization Challenge")
with gr.Tabs():
with gr.TabItem("Challenge"):
gr.Markdown(
"Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit bnb). "
"Enter a prompt, choose the quantization method, and generate two images. "
"The images will be shuffled, can you spot which one was quantized?"
)
gr.Markdown("### Examples")
ex_selector = gr.Radio(
choices=[ex["summary"] for ex in EXAMPLES],
label="Choose an example prompt",
interactive=True,
)
gr.Markdown("### …or create your own comparison")
with gr.Row():
prompt_input = gr.Textbox(label="Enter Prompt", scale=3)
quantization_choice_radio = gr.Radio(
choices=["8-bit bnb", "4-bit bnb"],
label="Select Quantization",
value="8-bit bnb",
scale=1
)
generate_button = gr.Button("Generate & Compare", variant="primary", scale=1)
output_gallery = gr.Gallery(
label="Generated Images",
columns=2,
height=606,
object_fit="contain",
allow_preview=True,
show_label=True,
)
gr.Markdown("### Which image used the selected quantization method?")
with gr.Row():
image1_btn = gr.Button("Image 1")
image2_btn = gr.Button("Image 2")
feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1)
with gr.Row():
session_score_box = gr.Textbox(label="Your accuracy this session", interactive=False)
gr.Markdown("""
### Dataset Information
Unless you opt out below, your submissions will be recorded in a dataset. This dataset contains anonymized challenge results including prompts, images, quantization methods,
and whether guesses were correct.
""")
opt_out_checkbox = gr.Checkbox(
label="Opt out of data collection (don't record my submissions to the dataset)",
value=False
)
correct_mapping_state = gr.State({})
session_stats_state = gr.State(
{"8-bit bnb": {"attempts": 0, "correct": 0},
"4-bit bnb": {"attempts": 0, "correct": 0}}
)
is_example_state = gr.State(False)
prompt_state = gr.State("")
seed_state = gr.State(None)
results_state = gr.State([])
def _load_example_and_update_dfs(sel_summary):
idx = next((i for i, ex in enumerate(EXAMPLES) if ex["summary"] == sel_summary), -1)
if idx == -1:
print(f"Error: Example with summary '{sel_summary}' not found.")
return (gr.update(), gr.update(), gr.update(), False, gr.update(), "", None, [])
ex = EXAMPLES[idx]
gallery_items, mapping, prompt = load_example(idx)
quant_data = update_leaderboards_data()
return gallery_items, mapping, prompt, True, quant_data, "", None, []
ex_selector.change(
fn=_load_example_and_update_dfs,
inputs=ex_selector,
outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df,
prompt_state, seed_state, results_state],
).then(
lambda: (gr.update(interactive=True), gr.update(interactive=True)),
outputs=[image1_btn, image2_btn],
)
generate_button.click(
fn=generate_images,
inputs=[prompt_input, quantization_choice_radio],
outputs=[output_gallery, correct_mapping_state, prompt_state, seed_state, results_state,
feedback_box]
).then(
lambda: False, # for is_example_state
outputs=[is_example_state]
).then(
lambda: (gr.update(interactive=True),
gr.update(interactive=True),
""),
outputs=[image1_btn, image2_btn, feedback_box],
)
def choose(choice_string, mapping, session_stats, is_example,
prompt, seed, results, opt_out):
feedback = check_guess(choice_string, mapping)
if not mapping:
return feedback, gr.update(), gr.update(), "", session_stats, gr.update()
quant_label_from_mapping = next((label for label in mapping.values() if "Quantized" in label), None)
if not quant_label_from_mapping:
print("Error: Could not determine quantization label from mapping:", mapping)
return ("Internal Error: Could not process results.", gr.update(interactive=False), gr.update(interactive=False),
"", session_stats, gr.update())
quant_key = "8-bit bnb" if "8-bit bnb" in quant_label_from_mapping else "4-bit bnb"
got_it_right = "Correct!" in feedback
sess = session_stats.copy()
if not is_example: # Only log and update stats if it's not an example run
sess[quant_key]["attempts"] += 1
if got_it_right:
sess[quant_key]["correct"] += 1
session_stats = sess # Update the state for the UI
AGG_STATS = _load_agg_stats()
AGG_STATS[quant_key]["attempts"] += 1
if got_it_right:
AGG_STATS[quant_key]["correct"] += 1
_save_agg_stats(AGG_STATS)
if not HF_TOKEN:
print("Warning: HF_TOKEN not set. Skipping dataset logging.")
elif not results:
print("Warning: Results state is empty. Skipping dataset logging.")
elif opt_out:
print("User opted out of dataset logging. Skipping.")
else:
print(f"Logging guess to HF Dataset: {HF_DATASET_REPO_ID}")
original_image = None
quantized_image = None
quantized_image_pos = -1
for shuffled_idx, original_label in mapping.items():
if "Quantized" in original_label:
quantized_image_pos = shuffled_idx
break
original_image = next((res["image"] for res in results if "Original" in res["label"]), None)
quantized_image = next((res["image"] for res in results if "Quantized" in res["label"]), None)
if original_image and quantized_image:
expected_features = Features({
"timestamp": Value("string"),
"prompt": Value("string"),
"quantization_method": Value("string"),
"seed": Value("string"),
"image_original": HFImage(),
"image_quantized": HFImage(),
"quantized_image_displayed_position": Value("string"),
"user_guess_displayed_position": Value("string"),
"correct_guess": Value("bool"),
"username": Value("string"), # Handles None
})
new_data_dict_of_lists = {
"timestamp": [datetime.now().isoformat()],
"prompt": [prompt],
"quantization_method": [quant_key],
"seed": [str(seed)],
"image_original": [original_image],
"image_quantized": [quantized_image],
"quantized_image_displayed_position": [f"Image {quantized_image_pos + 1}"],
"user_guess_displayed_position": [choice_string],
"correct_guess": [got_it_right],
"username": [None], # Log None for username
}
try:
existing_ds = load_dataset(
HF_DATASET_REPO_ID,
split="train",
token=HF_TOKEN,
features=expected_features,
)
new_row_ds = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
combined_ds = concatenate_datasets([existing_ds, new_row_ds])
combined_ds.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
print(f"Successfully appended guess to {HF_DATASET_REPO_ID} (train split)")
except Exception as e:
print(f"Could not load or append to existing dataset/split. Creating 'train' split with the new item. Error: {e}")
ds_new = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
ds_new.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
print(f"Successfully created and logged new 'train' split to {HF_DATASET_REPO_ID}")
else:
print("Error: Could not find original or quantized image in results state for logging.")
def _fmt(d):
a, c = d["attempts"], d["correct"]
pct = 100 * c / a if a else 0
return f"{c} / {a} ({pct:.1f}%)"
session_msg = ", ".join(
f"{k}: {_fmt(v)}" for k, v in sess.items()
)
quant_data = update_leaderboards_data()
return (feedback,
gr.update(interactive=False),
gr.update(interactive=False),
session_msg,
session_stats, # Return the potentially updated session_stats
quant_data)
image1_btn.click(
fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 1", mapping, sess, is_ex, p, s, r, opt_out),
inputs=[correct_mapping_state, session_stats_state, is_example_state,
prompt_state, seed_state, results_state, opt_out_checkbox],
outputs=[feedback_box, image1_btn, image2_btn,
session_score_box, session_stats_state,
quant_df],
)
image2_btn.click(
fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 2", mapping, sess, is_ex, p, s, r, opt_out),
inputs=[correct_mapping_state, session_stats_state, is_example_state,
prompt_state, seed_state, results_state, opt_out_checkbox],
outputs=[feedback_box, image1_btn, image2_btn,
session_score_box, session_stats_state,
quant_df],
)
with gr.TabItem("Leaderboard"):
gr.Markdown("## Quantization Method Leaderboard *(Lower % ⇒ harder to detect)*")
leaderboard_tab_quant_df = gr.DataFrame(
headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
interactive=False, col_count=(4, "fixed"), label="Quantization Method Leaderboard"
)
def update_all_leaderboards_for_tab():
q_rows = update_leaderboards_data()
return q_rows # Only return quantization method data
demo.load(update_all_leaderboards_for_tab, outputs=[
leaderboard_tab_quant_df,
])
if __name__ == "__main__":
demo.launch(share=True) |