Spaces:
Runtime error
Runtime error
Commit
·
8c3a770
1
Parent(s):
d0bb85b
Update app.py
Browse files
app.py
CHANGED
@@ -1,1381 +1,17 @@
|
|
1 |
-
"""This Streamlit app allows you to compare, from a given image, the results of different solutions:
|
2 |
-
EasyOcr, PaddleOCR, MMOCR, Tesseract
|
3 |
-
"""
|
4 |
import streamlit as st
|
5 |
-
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
###################################################################################################
|
24 |
-
## MAIN
|
25 |
-
###################################################################################################
|
26 |
-
def app():
|
27 |
-
|
28 |
-
###################################################################################################
|
29 |
-
## FUNCTIONS
|
30 |
-
###################################################################################################
|
31 |
-
|
32 |
-
@st.cache
|
33 |
-
def convert_df(in_df):
|
34 |
-
"""Convert data frame function, used by download button
|
35 |
-
|
36 |
-
Args:
|
37 |
-
in_df (data frame): data frame to convert
|
38 |
-
|
39 |
-
Returns:
|
40 |
-
data frame: converted data frame
|
41 |
-
"""
|
42 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
43 |
-
return in_df.to_csv().encode('utf-8')
|
44 |
-
|
45 |
-
###
|
46 |
-
def easyocr_coord_convert(in_list_coord):
|
47 |
-
"""Convert easyocr coordinates to standard format used by others functions
|
48 |
-
|
49 |
-
Args:
|
50 |
-
in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max]
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ]
|
54 |
-
"""
|
55 |
-
|
56 |
-
coord = in_list_coord
|
57 |
-
return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]]
|
58 |
-
|
59 |
-
###
|
60 |
-
@st.cache(show_spinner=False)
|
61 |
-
def initializations():
|
62 |
-
"""Initializations for the app
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
list of strings : list of OCR solutions names
|
66 |
-
(['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'])
|
67 |
-
dict : names and indices of the OCR solutions
|
68 |
-
({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3})
|
69 |
-
list of dicts : list of languages supported by each OCR solution
|
70 |
-
list of int : columns for recognition details results
|
71 |
-
dict : confidence color scale
|
72 |
-
plotly figure : confidence color scale figure
|
73 |
-
"""
|
74 |
-
# the readers considered
|
75 |
-
out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
|
76 |
-
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
|
77 |
-
|
78 |
-
# Columns for recognition details results
|
79 |
-
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
|
80 |
-
|
81 |
-
# Dicts of laguages supported by each reader
|
82 |
-
out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \
|
83 |
-
'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
|
84 |
-
'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \
|
85 |
-
'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \
|
86 |
-
'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \
|
87 |
-
'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \
|
88 |
-
'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \
|
89 |
-
'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \
|
90 |
-
'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \
|
91 |
-
'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \
|
92 |
-
'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \
|
93 |
-
'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \
|
94 |
-
'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \
|
95 |
-
'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \
|
96 |
-
'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \
|
97 |
-
'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \
|
98 |
-
'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \
|
99 |
-
'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'}
|
100 |
-
|
101 |
-
out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
|
102 |
-
'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
|
103 |
-
'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
|
104 |
-
'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
|
105 |
-
'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
|
106 |
-
'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
|
107 |
-
'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
|
108 |
-
'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
|
109 |
-
'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
|
110 |
-
'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
|
111 |
-
'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
|
112 |
-
'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
|
113 |
-
'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
|
114 |
-
'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
|
115 |
-
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
|
116 |
-
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
|
117 |
-
|
118 |
-
out_dict_lang_mmocr = {'English': 'en'}
|
119 |
-
|
120 |
-
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
|
121 |
-
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
|
122 |
-
'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \
|
123 |
-
'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \
|
124 |
-
'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \
|
125 |
-
'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \
|
126 |
-
'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \
|
127 |
-
'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \
|
128 |
-
'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \
|
129 |
-
'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \
|
130 |
-
'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \
|
131 |
-
'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \
|
132 |
-
'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \
|
133 |
-
'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \
|
134 |
-
'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \
|
135 |
-
'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \
|
136 |
-
'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \
|
137 |
-
'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \
|
138 |
-
'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \
|
139 |
-
'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \
|
140 |
-
'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \
|
141 |
-
'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \
|
142 |
-
'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \
|
143 |
-
'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \
|
144 |
-
'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \
|
145 |
-
'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \
|
146 |
-
'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \
|
147 |
-
'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \
|
148 |
-
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
|
149 |
-
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
|
150 |
-
|
151 |
-
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, out_dict_lang_mmocr, \
|
152 |
-
out_dict_lang_tesseract]
|
153 |
-
|
154 |
-
# Initialization of detection form
|
155 |
-
if 'columns_size' not in st.session_state:
|
156 |
-
st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]]
|
157 |
-
if 'column_width' not in st.session_state:
|
158 |
-
st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]]
|
159 |
-
if 'columns_color' not in st.session_state:
|
160 |
-
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
161 |
-
["rgb(0,0,0)" for x in out_reader_type_list[1:]]
|
162 |
-
if 'list_coordinates' not in st.session_state:
|
163 |
-
st.session_state.list_coordinates = []
|
164 |
-
|
165 |
-
# Confidence color scale
|
166 |
-
out_list_confid = list(np.arange(0,101,1))
|
167 |
-
out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid))
|
168 |
-
out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \
|
169 |
-
for i in range(len(out_list_confid))}
|
170 |
-
|
171 |
-
list_y = [1 for i in out_list_confid]
|
172 |
-
df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y})
|
173 |
-
|
174 |
-
out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \
|
175 |
-
hover_data={'% confidence scale': True, 'y': False},
|
176 |
-
color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100],
|
177 |
-
color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square'])
|
178 |
-
out_fig.update_xaxes(showticklabels=False)
|
179 |
-
out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False)
|
180 |
-
out_fig.update_traces(marker_size=50)
|
181 |
-
out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \
|
182 |
-
showlegend=False)
|
183 |
-
|
184 |
-
return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \
|
185 |
-
out_cols_size, out_dict_back_colors, out_fig
|
186 |
-
|
187 |
-
###
|
188 |
-
@st.experimental_memo(show_spinner=False)
|
189 |
-
def init_easyocr(in_params):
|
190 |
-
"""Initialization of easyOCR reader
|
191 |
-
|
192 |
-
Args:
|
193 |
-
in_params (list): list with the language
|
194 |
-
|
195 |
-
Returns:
|
196 |
-
easyocr reader: the easyocr reader instance
|
197 |
-
"""
|
198 |
-
out_ocr = easyocr.Reader(in_params)
|
199 |
-
return out_ocr
|
200 |
-
|
201 |
-
###
|
202 |
-
@st.cache(show_spinner=False)
|
203 |
-
def init_ppocr(in_params):
|
204 |
-
"""Initialization of PPOCR reader
|
205 |
-
|
206 |
-
Args:
|
207 |
-
in_params (dict): dict with parameters
|
208 |
-
|
209 |
-
Returns:
|
210 |
-
ppocr reader: the ppocr reader instance
|
211 |
-
"""
|
212 |
-
out_ocr = PaddleOCR(lang=in_params[0], **in_params[1])
|
213 |
-
return out_ocr
|
214 |
-
|
215 |
-
###
|
216 |
-
@st.experimental_memo(show_spinner=False)
|
217 |
-
def init_mmocr(in_params):
|
218 |
-
"""Initialization of MMOCR reader
|
219 |
-
|
220 |
-
Args:
|
221 |
-
in_params (dict): dict with parameters
|
222 |
-
|
223 |
-
Returns:
|
224 |
-
mmocr reader: the ppocr reader instance
|
225 |
-
"""
|
226 |
-
out_ocr = MMOCR(recog=None, **in_params[1])
|
227 |
-
return out_ocr
|
228 |
-
|
229 |
-
###
|
230 |
-
def init_readers(in_list_params):
|
231 |
-
"""Initialization of the readers, and return them as list
|
232 |
-
|
233 |
-
Args:
|
234 |
-
in_list_params (list): list of dicts of parameters for each reader
|
235 |
-
|
236 |
-
Returns:
|
237 |
-
list: list of the reader's instances
|
238 |
-
"""
|
239 |
-
# Instantiations of the readers :
|
240 |
-
# - EasyOCR
|
241 |
-
# with st.spinner("EasyOCR reader initialization in progress ..."):
|
242 |
-
# reader_easyocr = init_easyocr([in_list_params[0][0]])
|
243 |
-
|
244 |
-
# # - PPOCR
|
245 |
-
# # Paddleocr
|
246 |
-
# with st.spinner("PPOCR reader initialization in progress ..."):
|
247 |
-
# reader_ppocr = init_ppocr(in_list_params[1])
|
248 |
-
|
249 |
-
# - MMOCR
|
250 |
-
with st.spinner("MMOCR reader initialization in progress ..."):
|
251 |
-
reader_mmocr = init_mmocr(in_list_params[0])
|
252 |
-
|
253 |
-
out_list_readers = [reader_mmocr]
|
254 |
-
|
255 |
-
# out_list_readers = [reader_easyocr, reader_ppocr, reader_mmocr]
|
256 |
-
|
257 |
-
return out_list_readers
|
258 |
-
|
259 |
-
###
|
260 |
-
def load_image(in_image_file):
|
261 |
-
"""Load input file and open it
|
262 |
-
|
263 |
-
Args:
|
264 |
-
in_image_file (string or Streamlit UploadedFile): image to consider
|
265 |
-
|
266 |
-
Returns:
|
267 |
-
string : locally saved image path (img.)
|
268 |
-
PIL.Image : input file opened with Pillow
|
269 |
-
matrix : input file opened with Opencv
|
270 |
-
"""
|
271 |
-
|
272 |
-
#if isinstance(in_image_file, str):
|
273 |
-
# out_image_path = "img."+in_image_file.split('.')[-1]
|
274 |
-
#else:
|
275 |
-
# out_image_path = "img."+in_image_file.name.split('.')[-1]
|
276 |
-
|
277 |
-
if isinstance(in_image_file, str):
|
278 |
-
out_image_path = "tmp_"+in_image_file
|
279 |
-
else:
|
280 |
-
out_image_path = "tmp_"+in_image_file.name
|
281 |
-
|
282 |
-
img = Image.open(in_image_file)
|
283 |
-
img_saved = img.save(out_image_path)
|
284 |
-
|
285 |
-
# Read image
|
286 |
-
out_image_orig = Image.open(out_image_path)
|
287 |
-
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
|
288 |
-
|
289 |
-
return out_image_path, out_image_orig, out_image_cv2
|
290 |
-
|
291 |
-
###
|
292 |
-
@st.experimental_memo(show_spinner=False)
|
293 |
-
def easyocr_detect(_in_reader, in_image_path, in_params):
|
294 |
-
"""Detection with EasyOCR
|
295 |
-
|
296 |
-
Args:
|
297 |
-
_in_reader (EasyOCR reader) : the previously initialized instance
|
298 |
-
in_image_path (string ) : locally saved image path
|
299 |
-
in_params (list) : list with the parameters for detection
|
300 |
-
|
301 |
-
Returns:
|
302 |
-
list : list of the boxes coordinates
|
303 |
-
exception on error, string 'OK' otherwise
|
304 |
-
"""
|
305 |
-
try:
|
306 |
-
dict_param = in_params[1]
|
307 |
-
detection_result = _in_reader.detect(in_image_path,
|
308 |
-
#width_ths=0.7,
|
309 |
-
#mag_ratio=1.5
|
310 |
-
**dict_param
|
311 |
-
)
|
312 |
-
easyocr_coordinates = detection_result[0][0]
|
313 |
-
|
314 |
-
# The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
|
315 |
-
# Format boxes coordinates for draw
|
316 |
-
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
|
317 |
-
out_status = 'OK'
|
318 |
-
except Exception as e:
|
319 |
-
out_easyocr_boxes_coordinates = []
|
320 |
-
out_status = e
|
321 |
-
|
322 |
-
return out_easyocr_boxes_coordinates, out_status
|
323 |
-
|
324 |
-
###
|
325 |
-
@st.experimental_memo(show_spinner=False)
|
326 |
-
def ppocr_detect(_in_reader, in_image_path):
|
327 |
-
"""Detection with PPOCR
|
328 |
-
|
329 |
-
Args:
|
330 |
-
_in_reader (PPOCR reader) : the previously initialized instance
|
331 |
-
in_image_path (string ) : locally saved image path
|
332 |
-
|
333 |
-
Returns:
|
334 |
-
list : list of the boxes coordinates
|
335 |
-
exception on error, string 'OK' otherwise
|
336 |
-
"""
|
337 |
-
# PPOCR detection method
|
338 |
-
try:
|
339 |
-
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
|
340 |
-
out_status = 'OK'
|
341 |
-
except Exception as e:
|
342 |
-
out_ppocr_boxes_coordinates = []
|
343 |
-
out_status = e
|
344 |
-
|
345 |
-
return out_ppocr_boxes_coordinates, out_status
|
346 |
-
|
347 |
-
###
|
348 |
-
@st.experimental_memo(show_spinner=False)
|
349 |
-
def mmocr_detect(_in_reader, in_image_path):
|
350 |
-
"""Detection with MMOCR
|
351 |
-
|
352 |
-
Args:
|
353 |
-
_in_reader (EasyORC reader) : the previously initialized instance
|
354 |
-
in_image_path (string) : locally saved image path
|
355 |
-
in_params (list) : list with the parameters
|
356 |
-
|
357 |
-
Returns:
|
358 |
-
list : list of the boxes coordinates
|
359 |
-
exception on error, string 'OK' otherwise
|
360 |
-
"""
|
361 |
-
# MMOCR detection method
|
362 |
-
out_mmocr_boxes_coordinates = []
|
363 |
-
try:
|
364 |
-
det_result = _in_reader.readtext(in_image_path, details=True)
|
365 |
-
bboxes_list = [res['boundary_result'] for res in det_result]
|
366 |
-
for bboxes in bboxes_list:
|
367 |
-
for bbox in bboxes:
|
368 |
-
if len(bbox) > 9:
|
369 |
-
min_x = min(bbox[0:-1:2])
|
370 |
-
min_y = min(bbox[1:-1:2])
|
371 |
-
max_x = max(bbox[0:-1:2])
|
372 |
-
max_y = max(bbox[1:-1:2])
|
373 |
-
#box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
|
374 |
-
else:
|
375 |
-
min_x = min(bbox[0:-1:2])
|
376 |
-
min_y = min(bbox[1::2])
|
377 |
-
max_x = max(bbox[0:-1:2])
|
378 |
-
max_y = max(bbox[1::2])
|
379 |
-
box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
|
380 |
-
out_mmocr_boxes_coordinates.append(box4)
|
381 |
-
out_status = 'OK'
|
382 |
-
except Exception as e:
|
383 |
-
out_status = e
|
384 |
-
|
385 |
-
return out_mmocr_boxes_coordinates, out_status
|
386 |
-
|
387 |
-
###
|
388 |
-
def cropped_1box(in_box, in_img):
|
389 |
-
"""Construction of an cropped image corresponding to an area of the initial image
|
390 |
-
|
391 |
-
Args:
|
392 |
-
in_box (list) : box with coordinates
|
393 |
-
in_img (matrix) : image
|
394 |
-
|
395 |
-
Returns:
|
396 |
-
matrix : cropped image
|
397 |
-
"""
|
398 |
-
box_ar = np.array(in_box).astype(np.int64)
|
399 |
-
x_min = box_ar[:, 0].min()
|
400 |
-
x_max = box_ar[:, 0].max()
|
401 |
-
y_min = box_ar[:, 1].min()
|
402 |
-
y_max = box_ar[:, 1].max()
|
403 |
-
out_cropped = in_img[y_min:y_max, x_min:x_max]
|
404 |
-
|
405 |
-
return out_cropped
|
406 |
-
|
407 |
-
###
|
408 |
-
@st.experimental_memo(show_spinner=False)
|
409 |
-
def tesserocr_detect(in_image_path, _in_img, in_params):
|
410 |
-
"""Detection with Tesseract
|
411 |
-
|
412 |
-
Args:
|
413 |
-
in_image_path (string) : locally saved image path
|
414 |
-
_in_img (PIL.Image) : image to consider
|
415 |
-
in_params (list) : list with the parameters for detection
|
416 |
-
|
417 |
-
Returns:
|
418 |
-
list : list of the boxes coordinates
|
419 |
-
exception on error, string 'OK' otherwise
|
420 |
-
"""
|
421 |
-
try:
|
422 |
-
dict_param = in_params[1]
|
423 |
-
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)
|
424 |
-
|
425 |
-
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
|
426 |
-
[d['left'] + d['width'], d['top']], \
|
427 |
-
[d['left'] + d['width'], d['top'] + d['height']], \
|
428 |
-
[d['left'], d['top'] + d['height']], \
|
429 |
-
], axis=1)
|
430 |
-
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
|
431 |
-
out_status = 'OK'
|
432 |
-
except Exception as e:
|
433 |
-
out_tesserocr_boxes_coordinates = []
|
434 |
-
out_status = e
|
435 |
-
|
436 |
-
return out_tesserocr_boxes_coordinates, out_status
|
437 |
-
|
438 |
-
###
|
439 |
-
@st.experimental_memo(show_spinner=False)
|
440 |
-
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
|
441 |
-
"""Detection process for each OCR solution
|
442 |
-
|
443 |
-
Args:
|
444 |
-
in_image_path (string) : locally saved image path
|
445 |
-
_in_list_images (list) : list of original image
|
446 |
-
_in_list_readers (list) : list with previously initialized reader's instances
|
447 |
-
in_list_params (list) : list with dict parameters for each OCR solution
|
448 |
-
in_color (tuple) : color for boxes around text
|
449 |
-
|
450 |
-
Returns:
|
451 |
-
list: list of detection results images
|
452 |
-
list: list of boxes coordinates
|
453 |
-
"""
|
454 |
-
## ------- EasyOCR Text detection
|
455 |
-
# with st.spinner('EasyOCR Text detection in progress ...'):
|
456 |
-
# easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
|
457 |
-
# in_image_path, in_list_params[0])
|
458 |
-
# # Visualization
|
459 |
-
# if easyocr_boxes_coordinates:
|
460 |
-
# easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
|
461 |
-
# in_color, 'None', 3)
|
462 |
-
# else:
|
463 |
-
# easyocr_boxes_coordinates = easyocr_status
|
464 |
-
##
|
465 |
-
|
466 |
-
## ------- PPOCR Text detection
|
467 |
-
# with st.spinner('PPOCR Text detection in progress ...'):
|
468 |
-
# ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
|
469 |
-
# # Visualization
|
470 |
-
# if ppocr_boxes_coordinates:
|
471 |
-
# ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
|
472 |
-
# in_color, 'None', 3)
|
473 |
-
# else:
|
474 |
-
# ppocr_image_detect = ppocr_status
|
475 |
-
##
|
476 |
-
|
477 |
-
## ------- MMOCR Text detection
|
478 |
-
with st.spinner('Text detection in progress ...'):
|
479 |
-
mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[0], in_image_path)
|
480 |
-
# Visualization
|
481 |
-
if mmocr_boxes_coordinates:
|
482 |
-
mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
|
483 |
-
in_color, 'None', 3)
|
484 |
-
else:
|
485 |
-
mmocr_image_detect = mmocr_status
|
486 |
-
##
|
487 |
-
|
488 |
-
## ------- Tesseract Text detection
|
489 |
-
# with st.spinner('Tesseract Text detection in progress ...'):
|
490 |
-
# tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \
|
491 |
-
# _in_list_images[0], \
|
492 |
-
# in_list_params[3])
|
493 |
-
# # Visualization
|
494 |
-
# if tesserocr_status == 'OK':
|
495 |
-
# tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
|
496 |
-
# in_color, 'None', 3)
|
497 |
-
# else:
|
498 |
-
# tesserocr_image_detect = tesserocr_status
|
499 |
-
##
|
500 |
-
#
|
501 |
-
out_list_images = _in_list_images + [ mmocr_image_detect]
|
502 |
-
out_list_coordinates = [mmocr_boxes_coordinates]
|
503 |
-
# out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
|
504 |
-
# mmocr_image_detect, tesserocr_image_detect]
|
505 |
-
# out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
|
506 |
-
# mmocr_boxes_coordinates, tesserocr_boxes_coordinates]
|
507 |
-
#
|
508 |
-
|
509 |
-
return out_list_images, out_list_coordinates
|
510 |
-
|
511 |
-
###
|
512 |
-
def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4):
|
513 |
-
"""Draw boxes around detected text
|
514 |
-
|
515 |
-
Args:
|
516 |
-
in_image (PIL.Image) : original image
|
517 |
-
in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right
|
518 |
-
[ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ],
|
519 |
-
[ ... ]
|
520 |
-
]
|
521 |
-
in_color (tuple) : color for boxes around text
|
522 |
-
posit (str, optional) : position for text. Defaults to 'None'.
|
523 |
-
in_thickness (int, optional): thickness of the box. Defaults to 4.
|
524 |
-
|
525 |
-
Returns:
|
526 |
-
PIL.Image : original image with detected areas
|
527 |
-
"""
|
528 |
-
work_img = in_image.copy()
|
529 |
-
if in_boxes_coordinates:
|
530 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
531 |
-
for ind_box, box in enumerate(in_boxes_coordinates):
|
532 |
-
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
|
533 |
-
work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness)
|
534 |
-
if posit != 'None':
|
535 |
-
if posit == 'top_left':
|
536 |
-
pos = tuple(box[0][0])
|
537 |
-
elif posit == 'top_right':
|
538 |
-
pos = tuple(box[1][0])
|
539 |
-
work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \
|
540 |
-
in_thickness,cv2.LINE_AA)
|
541 |
-
|
542 |
-
out_image_drawn = Image.fromarray(work_img)
|
543 |
-
else:
|
544 |
-
out_image_drawn = work_img
|
545 |
-
|
546 |
-
return out_image_drawn
|
547 |
-
|
548 |
-
###
|
549 |
-
@st.experimental_memo(show_spinner=False)
|
550 |
-
def get_cropped(in_boxes_coordinates, in_image_cv):
|
551 |
-
"""Construct list of cropped images corresponding of the input boxes coordinates list
|
552 |
-
|
553 |
-
Args:
|
554 |
-
in_boxes_coordinates (list) : list of boxes coordinates
|
555 |
-
in_image_cv (matrix) : original image
|
556 |
-
|
557 |
-
Returns:
|
558 |
-
list : list with cropped images
|
559 |
-
"""
|
560 |
-
out_list_images = []
|
561 |
-
for box in in_boxes_coordinates:
|
562 |
-
cropped = cropped_1box(box, in_image_cv)
|
563 |
-
out_list_images.append(cropped)
|
564 |
-
return out_list_images
|
565 |
-
|
566 |
-
###
|
567 |
-
def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params):
|
568 |
-
"""Recognition process for each OCR solution
|
569 |
-
|
570 |
-
Args:
|
571 |
-
in_list_readers (list) : list with previously initialized reader's instances
|
572 |
-
in_image_cv (matrix) : original image
|
573 |
-
in_boxes_coordinates (list) : list of boxes coordinates
|
574 |
-
in_list_dict_params (list) : list with dict parameters for each OCR solution
|
575 |
-
|
576 |
-
Returns:
|
577 |
-
data frame : results for each OCR solution, except Tesseract
|
578 |
-
data frame : results for Tesseract
|
579 |
-
list : status for each recognition (exception or 'OK')
|
580 |
-
"""
|
581 |
-
out_df_results = pd.DataFrame([])
|
582 |
-
|
583 |
-
list_text_easyocr = []
|
584 |
-
list_confidence_easyocr = []
|
585 |
-
list_text_ppocr = []
|
586 |
-
list_confidence_ppocr = []
|
587 |
-
list_text_mmocr = []
|
588 |
-
list_confidence_mmocr = []
|
589 |
-
|
590 |
-
# Create cropped images from detection
|
591 |
-
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
|
592 |
-
|
593 |
-
# Recognize with EasyOCR
|
594 |
-
# with st.spinner('EasyOCR Text recognition in progress ...'):
|
595 |
-
# list_text_easyocr, list_confidence_easyocr, status_easyocr = \
|
596 |
-
# easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0])
|
597 |
-
##
|
598 |
-
|
599 |
-
# Recognize with PPOCR
|
600 |
-
# with st.spinner('PPOCR Text recognition in progress ...'):
|
601 |
-
# list_text_ppocr, list_confidence_ppocr, status_ppocr = \
|
602 |
-
# ppocr_recog(list_cropped_images, in_list_dict_params[1])
|
603 |
-
##
|
604 |
-
|
605 |
-
# Recognize with MMOCR
|
606 |
-
with st.spinner('Text recognition in progress ...'):
|
607 |
-
list_text_mmocr, list_confidence_mmocr, status_mmocr = \
|
608 |
-
mmocr_recog(list_cropped_images, in_list_dict_params[0])
|
609 |
-
##
|
610 |
-
|
611 |
-
# # Recognize with Tesseract
|
612 |
-
# with st.spinner('Tesseract Text recognition in progress ...'):
|
613 |
-
# out_df_results_tesseract, status_tesseract = \
|
614 |
-
# tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images))
|
615 |
-
##
|
616 |
-
|
617 |
-
# Create results data frame
|
618 |
-
out_df_results = pd.DataFrame({'cropped_image': list_cropped_images,
|
619 |
-
'text_mmocr': list_text_mmocr,
|
620 |
-
'confidence_mmocr': list_confidence_mmocr
|
621 |
-
}
|
622 |
-
)
|
623 |
-
|
624 |
-
out_list_reco_status = [status_mmocr]
|
625 |
-
|
626 |
-
return out_df_results, out_list_reco_status
|
627 |
-
|
628 |
-
###
|
629 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
630 |
-
def easyocr_recog(in_list_images, _in_reader_easyocr, in_params):
|
631 |
-
"""Recognition with EasyOCR
|
632 |
-
|
633 |
-
Args:
|
634 |
-
in_list_images (list) : list of cropped images
|
635 |
-
_in_reader_easyocr (EasyOCR reader) : the previously initialized instance
|
636 |
-
in_params (dict) : parameters for recognition
|
637 |
-
|
638 |
-
Returns:
|
639 |
-
list : list of recognized text
|
640 |
-
list : list of recognition confidence
|
641 |
-
string/Exception : recognition status
|
642 |
-
"""
|
643 |
-
progress_bar = st.progress(0)
|
644 |
-
out_list_text_easyocr = []
|
645 |
-
out_list_confidence_easyocr = []
|
646 |
-
## ------- EasyOCR Text recognition
|
647 |
-
try:
|
648 |
-
step = 0*len(in_list_images) # first recognition process
|
649 |
-
nb_steps = 4 * len(in_list_images)
|
650 |
-
for ind_img, cropped in enumerate(in_list_images):
|
651 |
-
result = _in_reader_easyocr.recognize(cropped, **in_params)
|
652 |
-
try:
|
653 |
-
out_list_text_easyocr.append(result[0][1])
|
654 |
-
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
|
655 |
-
except:
|
656 |
-
out_list_text_easyocr.append('Not recognize')
|
657 |
-
out_list_confidence_easyocr.append(100.)
|
658 |
-
progress_bar.progress((step+ind_img+1)/nb_steps)
|
659 |
-
out_status = 'OK'
|
660 |
-
except Exception as e:
|
661 |
-
out_status = e
|
662 |
-
progress_bar.empty()
|
663 |
-
|
664 |
-
return out_list_text_easyocr, out_list_confidence_easyocr, out_status
|
665 |
-
|
666 |
-
###
|
667 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
668 |
-
def ppocr_recog(in_list_images, in_params):
|
669 |
-
"""Recognition with PPOCR
|
670 |
-
|
671 |
-
Args:
|
672 |
-
in_list_images (list) : list of cropped images
|
673 |
-
in_params (dict) : parameters for recognition
|
674 |
-
|
675 |
-
Returns:
|
676 |
-
list : list of recognized text
|
677 |
-
list : list of recognition confidence
|
678 |
-
string/Exception : recognition status
|
679 |
-
"""
|
680 |
-
## ------- PPOCR Text recognition
|
681 |
-
out_list_text_ppocr = []
|
682 |
-
out_list_confidence_ppocr = []
|
683 |
-
try:
|
684 |
-
reader_ppocr = PaddleOCR(**in_params)
|
685 |
-
step = 1*len(in_list_images) # second recognition process
|
686 |
-
nb_steps = 4 * len(in_list_images)
|
687 |
-
progress_bar = st.progress(step/nb_steps)
|
688 |
-
|
689 |
-
for ind_img, cropped in enumerate(in_list_images):
|
690 |
-
result = reader_ppocr.ocr(cropped, det=False, cls=False)
|
691 |
-
try:
|
692 |
-
out_list_text_ppocr.append(result[0][0])
|
693 |
-
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
|
694 |
-
except:
|
695 |
-
out_list_text_ppocr.append('Not recognize')
|
696 |
-
out_list_confidence_ppocr.append(100.)
|
697 |
-
progress_bar.progress((step+ind_img+1)/nb_steps)
|
698 |
-
out_status = 'OK'
|
699 |
-
except Exception as e:
|
700 |
-
out_status = e
|
701 |
-
progress_bar.empty()
|
702 |
-
|
703 |
-
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
|
704 |
-
|
705 |
-
###
|
706 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
707 |
-
def mmocr_recog(in_list_images, in_params):
|
708 |
-
"""Recognition with MMOCR
|
709 |
-
|
710 |
-
Args:
|
711 |
-
in_list_images (list) : list of cropped images
|
712 |
-
in_params (dict) : parameters for recognition
|
713 |
-
|
714 |
-
Returns:
|
715 |
-
list : list of recognized text
|
716 |
-
list : list of recognition confidence
|
717 |
-
string/Exception : recognition status
|
718 |
-
"""
|
719 |
-
## ------- MMOCR Text recognition
|
720 |
-
out_list_text_mmocr = []
|
721 |
-
out_list_confidence_mmocr = []
|
722 |
-
try:
|
723 |
-
reader_mmocr = MMOCR(det=None, **in_params)
|
724 |
-
step = 2*len(in_list_images) # third recognition process
|
725 |
-
nb_steps = 4 * len(in_list_images)
|
726 |
-
progress_bar = st.progress(step/nb_steps)
|
727 |
-
|
728 |
-
for ind_img, cropped in enumerate(in_list_images):
|
729 |
-
result = reader_mmocr.readtext(cropped, details=True)
|
730 |
-
try:
|
731 |
-
out_list_text_mmocr.append(result[0]['text'])
|
732 |
-
out_list_confidence_mmocr.append(np.round(100* \
|
733 |
-
(np.array(result[0]['score']).mean()), 1))
|
734 |
-
except:
|
735 |
-
out_list_text_mmocr.append('Not recognize')
|
736 |
-
out_list_confidence_mmocr.append(100.)
|
737 |
-
progress_bar.progress((step+ind_img+1)/nb_steps)
|
738 |
-
out_status = 'OK'
|
739 |
-
except Exception as e:
|
740 |
-
out_status = e
|
741 |
-
progress_bar.empty()
|
742 |
-
|
743 |
-
return out_list_text_mmocr, out_list_confidence_mmocr, out_status
|
744 |
-
|
745 |
-
###
|
746 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
747 |
-
def tesserocr_recog(in_img, in_params, in_nb_images):
|
748 |
-
"""Recognition with Tesseract
|
749 |
-
|
750 |
-
Args:
|
751 |
-
in_image_cv (matrix) : original image
|
752 |
-
in_params (dict) : parameters for recognition
|
753 |
-
in_nb_images : nb cropped images (used for progress bar)
|
754 |
-
|
755 |
-
Returns:
|
756 |
-
Pandas data frame : recognition results
|
757 |
-
string/Exception : recognition status
|
758 |
-
"""
|
759 |
-
## ------- Tesseract Text recognition
|
760 |
-
step = 3*in_nb_images # fourth recognition process
|
761 |
-
nb_steps = 4 * in_nb_images
|
762 |
-
progress_bar = st.progress(step/nb_steps)
|
763 |
-
|
764 |
-
try:
|
765 |
-
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
|
766 |
-
|
767 |
-
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
|
768 |
-
[d['left'] + d['width'], d['top']], \
|
769 |
-
[d['left']+d['width'], d['top']+d['height']], \
|
770 |
-
[d['left'], d['top'] + d['height']], \
|
771 |
-
], axis=1)
|
772 |
-
out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
|
773 |
-
out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
|
774 |
-
.reset_index(drop=True)
|
775 |
-
out_status = 'OK'
|
776 |
-
except Exception as e:
|
777 |
-
out_df_result = pd.DataFrame([])
|
778 |
-
out_status = e
|
779 |
-
|
780 |
-
progress_bar.progress(1.)
|
781 |
-
|
782 |
-
return out_df_result, out_status
|
783 |
-
|
784 |
-
###
|
785 |
-
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
786 |
-
in_dict_back_colors, in_reader_type_list, \
|
787 |
-
in_font_scale=1, in_conf_threshold=65):
|
788 |
-
"""Draw recognized text on original image, for each OCR solution used
|
789 |
-
|
790 |
-
Args:
|
791 |
-
in_image (matrix) : original image
|
792 |
-
in_boxes_coordinates (list) : list of boxes coordinates
|
793 |
-
in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
|
794 |
-
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
|
795 |
-
in_df_results_tesseract (Pandas data frame): Tesseract recognition results
|
796 |
-
in_font_scale (int, optional): text font scale. Defaults to 3.
|
797 |
-
|
798 |
-
Returns:
|
799 |
-
shows the results container
|
800 |
-
"""
|
801 |
-
img = in_image.copy()
|
802 |
-
nb_readers = 1
|
803 |
-
# list_reco_images = img.copy()
|
804 |
-
|
805 |
-
for num, box_ in enumerate(in_boxes_coordinates):
|
806 |
-
box = np.array(box_).astype(np.int64)
|
807 |
-
|
808 |
-
# For each box : draw the results of each recognizer
|
809 |
-
|
810 |
-
confid = np.round(in_list_confid[0][num], 0)
|
811 |
-
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
812 |
-
if confid < in_conf_threshold:
|
813 |
-
text_color = (0, 0, 0)
|
814 |
-
else:
|
815 |
-
text_color = (255, 255, 255)
|
816 |
-
|
817 |
-
list_reco_images = cv2.rectangle(img, \
|
818 |
-
(box[0][0], box[0][1]), \
|
819 |
-
(box[2][0], box[2][1]), rgb_color, -1)
|
820 |
-
list_reco_images = cv2.putText(img, \
|
821 |
-
in_list_texts[0][num], \
|
822 |
-
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
|
823 |
-
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
|
824 |
-
|
825 |
-
# # Add Tesseract process
|
826 |
-
# if not in_df_results_tesseract.empty:
|
827 |
-
# ind_tessocr = nb_readers-1
|
828 |
-
# for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()):
|
829 |
-
# box = np.array(box_).astype(np.int64)
|
830 |
-
# confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0)
|
831 |
-
# rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
832 |
-
# if confid < in_conf_threshold:
|
833 |
-
# text_color = (0, 0, 0)
|
834 |
-
# else:
|
835 |
-
# text_color = (255, 255, 255)
|
836 |
-
|
837 |
-
# list_reco_images[ind_tessocr] = \
|
838 |
-
# cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
|
839 |
-
# (box[2][0], box[2][1]), rgb_color, -1)
|
840 |
-
# try:
|
841 |
-
# list_reco_images[ind_tessocr] = \
|
842 |
-
# cv2.putText(list_reco_images[ind_tessocr], \
|
843 |
-
# in_df_results_tesseract.iloc[num]['text'], \
|
844 |
-
# (box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
|
845 |
-
# cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
|
846 |
-
|
847 |
-
# except:
|
848 |
-
|
849 |
-
# pass
|
850 |
-
with show_reco.container():
|
851 |
-
# column_width = 400
|
852 |
-
|
853 |
-
cols = st.columns((1,1))
|
854 |
-
cols[0].image(list_reco_images,use_column_width=True)
|
855 |
-
# with show_reco.container():
|
856 |
-
# # Draw the results, 2 images per line
|
857 |
-
# reco_lines = math.ceil(len(in_reader_type_list) / 2)
|
858 |
-
# column_width = 400
|
859 |
-
# for ind_lig in range(0, reco_lines+1, 2):
|
860 |
-
# cols = st.columns(2)
|
861 |
-
# for ind_col in range(2):
|
862 |
-
# ind = ind_lig + ind_col
|
863 |
-
# if ind <= len(in_reader_type_list):
|
864 |
-
# if in_reader_type_list[ind] == 'Tesseract':
|
865 |
-
# column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
|
866 |
-
# ">Recognition with ' + in_reader_type_list[ind] + \
|
867 |
-
# '<sp style="font-size: 17px"> (with its own detector) \
|
868 |
-
# </sp></p>'
|
869 |
-
# else:
|
870 |
-
# column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
|
871 |
-
# ">Recognition with ' + \
|
872 |
-
# in_reader_type_list[ind]+ '</p>'
|
873 |
-
# cols[ind_col].markdown(column_title, unsafe_allow_html=True)
|
874 |
-
# if st.session_state.list_reco_status[ind] == 'OK':
|
875 |
-
# cols[ind_col].image(list_reco_images[ind], \
|
876 |
-
# width=column_width, use_column_width=True)
|
877 |
-
# else:
|
878 |
-
# cols[ind_col].write(list_reco_status[ind], \
|
879 |
-
# use_column_width=True)
|
880 |
-
|
881 |
-
# st.markdown(' 💡 Bad font size? you can adjust it below and refresh:')
|
882 |
-
|
883 |
-
###
|
884 |
-
def highlight():
|
885 |
-
""" Highlight MMOCR results """
|
886 |
-
with show_detect.container():
|
887 |
-
column_title = '<p style="font-size: 20px;color: rgb(228,26,28);">Detection with MMOCR</p>'
|
888 |
-
show_detect.markdown(column_title, unsafe_allow_html=True)
|
889 |
-
if isinstance(list_images[2], PIL.Image.Image):
|
890 |
-
show_detect.image(list_images[2], width=400, use_column_width=True)
|
891 |
-
else:
|
892 |
-
show_detect.write(list_images[2], use_column_width=True)
|
893 |
-
|
894 |
-
|
895 |
-
###
|
896 |
-
@st.cache(show_spinner=False)
|
897 |
-
def get_demo():
|
898 |
-
"""Get the demo files
|
899 |
-
|
900 |
-
Returns:
|
901 |
-
PIL.Image : input file opened with Pillow
|
902 |
-
PIL.Image : input file opened with Pillow
|
903 |
-
"""
|
904 |
-
|
905 |
-
out_img_demo_1 = Image.open("img_demo_1.jpg")
|
906 |
-
out_img_demo_2 = Image.open("img_demo_2.jpg")
|
907 |
-
|
908 |
-
return out_img_demo_1, out_img_demo_2
|
909 |
-
|
910 |
-
###
|
911 |
-
def raz():
|
912 |
-
st.session_state.list_coordinates = []
|
913 |
-
st.session_state.list_images = []
|
914 |
-
st.session_state.detect_reader = reader_type_list[0]
|
915 |
-
|
916 |
-
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
|
917 |
-
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
|
918 |
-
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
919 |
-
["rgb(0,0,0)" for x in reader_type_list[1:]]
|
920 |
-
|
921 |
-
# Clear caches
|
922 |
-
easyocr_detect.clear()
|
923 |
-
ppocr_detect.clear()
|
924 |
-
mmocr_detect.clear()
|
925 |
-
tesserocr_detect.clear()
|
926 |
-
process_detect.clear()
|
927 |
-
get_cropped.clear()
|
928 |
-
easyocr_recog.clear()
|
929 |
-
ppocr_recog.clear()
|
930 |
-
mmocr_recog.clear()
|
931 |
-
tesserocr_recog.clear()
|
932 |
-
|
933 |
-
|
934 |
-
##----------- Initializations ---------------------------------------------------------------------
|
935 |
-
#print("PID : ", os.getpid())
|
936 |
-
|
937 |
-
st.title("Scene text detection DEMO apps")
|
938 |
-
#st.markdown("#### PID : " + str(os.getpid()))
|
939 |
-
|
940 |
-
# Initializations
|
941 |
-
with st.spinner("Initializations in progress ..."):
|
942 |
-
reader_type_list, reader_type_dict, list_dict_lang, \
|
943 |
-
cols_size, dict_back_colors, fig_colorscale = initializations()
|
944 |
-
img_demo_1, img_demo_2 = get_demo()
|
945 |
-
|
946 |
-
##----------- Choose language & image -------------------------------------------------------------
|
947 |
-
st.markdown("#### Choose languages:")
|
948 |
-
lang_col = st.columns((1,3)) # 1/4 of the space for the dropdown, 3/4 for the rest of the content
|
949 |
-
mmocr_key_lang = lang_col[0].selectbox("", list_dict_lang[0].keys(), 0)
|
950 |
-
mmocr_lang = list_dict_lang[0][mmocr_key_lang]
|
951 |
-
|
952 |
-
|
953 |
-
st.markdown("#### Choose picture:")
|
954 |
-
cols_pict = st.columns([1, 2])
|
955 |
-
img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \
|
956 |
-
index=0, on_change=raz)
|
957 |
-
|
958 |
-
if img_typ == 'Upload file':
|
959 |
-
image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg"], on_change=raz)
|
960 |
-
if img_typ == 'Take a picture':
|
961 |
-
image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz)
|
962 |
-
if img_typ == 'Use a demo file':
|
963 |
-
with st.expander('Choose a demo file:', expanded=True):
|
964 |
-
demo_used = st.radio('', ['File 1', 'File 2'], index=0, \
|
965 |
-
horizontal=True, on_change=raz)
|
966 |
-
cols_demo = st.columns([1, 2])
|
967 |
-
cols_demo[0].markdown('###### File 1')
|
968 |
-
cols_demo[0].image(img_demo_1, width=150)
|
969 |
-
cols_demo[1].markdown('###### File 2')
|
970 |
-
cols_demo[1].image(img_demo_2, width=300)
|
971 |
-
if demo_used == 'File 1':
|
972 |
-
image_file = 'img_demo_1.jpg'
|
973 |
-
else:
|
974 |
-
image_file = 'img_demo_2.jpg'
|
975 |
-
|
976 |
-
##----------- Process input image -----------------------------------------------------------------
|
977 |
-
if image_file is not None:
|
978 |
-
image_path, image_orig, image_cv2 = load_image(image_file)
|
979 |
-
list_images = [image_orig, image_cv2]
|
980 |
-
|
981 |
-
##----------- Form with original image & hyperparameters for detectors ----------------------------
|
982 |
-
with st.form("form1"):
|
983 |
-
col1, col2 = st.columns(2, ) #gap="medium")
|
984 |
-
col1.markdown("##### Original image")
|
985 |
-
col1.image(list_images[0], width=400)
|
986 |
-
col2.markdown("##### Hyperparameters values for detection")
|
987 |
-
|
988 |
-
# with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
|
989 |
-
# expanded=False):
|
990 |
-
# t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \
|
991 |
-
# help="min_size (int, default = 10) - Filter text box smaller than \
|
992 |
-
# minimum value in pixel")
|
993 |
-
# t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \
|
994 |
-
# help="text_threshold (float, default = 0.7) - Text confidence threshold")
|
995 |
-
# t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \
|
996 |
-
# help="low_text (float, default = 0.4) - Text low-bound score")
|
997 |
-
# t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \
|
998 |
-
# help="link_threshold (float, default = 0.4) - Link confidence threshold")
|
999 |
-
# t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \
|
1000 |
-
# help='''canvas_size (int, default = 2560) \n
|
1001 |
-
# Maximum e size. Image bigger than this value will be resized down''')
|
1002 |
-
# t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \
|
1003 |
-
# help="mag_ratio (float, default = 1) - Image magnification ratio")
|
1004 |
-
# t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \
|
1005 |
-
# help='''slope_ths (float, default = 0.1) - Maximum slope \
|
1006 |
-
# (delta y/delta x) to considered merging. \n
|
1007 |
-
# Low valuans tiled boxes will not be merged.''')
|
1008 |
-
# t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \
|
1009 |
-
# help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n
|
1010 |
-
# Boxes wiifferent level should not be merged.''')
|
1011 |
-
# t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \
|
1012 |
-
# help='''height_ths (float, default = 0.5) - Maximum different in box height. \n
|
1013 |
-
# Boxes wiery different text size should not be merged.''')
|
1014 |
-
# t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \
|
1015 |
-
# help="width_ths (float, default = 0.5) - Maximum horizontal \
|
1016 |
-
# distance to merge boxes.")
|
1017 |
-
# t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \
|
1018 |
-
# help='''add_margin (float, default = 0.1) - \
|
1019 |
-
# Extend bounding boxes in all direction by certain value. \n
|
1020 |
-
# This is rtant for language with complex script (E.g. Thai).''')
|
1021 |
-
# t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \
|
1022 |
-
# help="optimal_num_chars (int, default = None) - If specified, bounding boxes \
|
1023 |
-
# with estimated number of characters near this value are returned first.")
|
1024 |
-
|
1025 |
-
# with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \
|
1026 |
-
# expanded=False):
|
1027 |
-
# t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \
|
1028 |
-
# help='Type of detection algorithm selected. (default = DB)')
|
1029 |
-
# t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \
|
1030 |
-
# help='''The maximum size of the long side of the image. (default = 960)\n
|
1031 |
-
# Limit thximum image height and width.\n
|
1032 |
-
# When theg side exceeds this value, the long side will be resized to this size, and the short side \
|
1033 |
-
# will be ed proportionally.''')
|
1034 |
-
# t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \
|
1035 |
-
# help='''Binarization threshold value of DB output map. (default = 0.3) \n
|
1036 |
-
# Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''')
|
1037 |
-
# t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \
|
1038 |
-
# help='''The threshold value of the DB output box. (default = 0.6) \n
|
1039 |
-
# DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n
|
1040 |
-
# Boxes sclower than this value will be discard.''')
|
1041 |
-
# t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \
|
1042 |
-
# help='''The expanded ratio of DB output box. (default = 1.6) \n
|
1043 |
-
# Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''')
|
1044 |
-
# t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \
|
1045 |
-
# help="Binarization threshold value of EAST output map. (default = 0.8)")
|
1046 |
-
# t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \
|
1047 |
-
# help='''The threshold value of the EAST output box. (default = 0.1) \n
|
1048 |
-
# Boxes sclower than this value will be discarded.''')
|
1049 |
-
# t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \
|
1050 |
-
# help="The NMS threshold value of EAST model output box. (default = 0.2)")
|
1051 |
-
# t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \
|
1052 |
-
# help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
|
1053 |
-
# to calculate. (default = fast) \n
|
1054 |
-
# Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
|
1055 |
-
|
1056 |
-
with col2.expander("Choose detection hyperparameters for detection model" ,expanded=False):
|
1057 |
-
t2_det = 'DBPP_r50'
|
1058 |
-
st.write("###### *More about text detection models* 👉 \
|
1059 |
-
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
|
1060 |
-
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
|
1061 |
-
help='The maximum x-axis distance to merge boxes. (defaut=20)')
|
1062 |
-
|
1063 |
-
# with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
|
1064 |
-
# expanded=False):
|
1065 |
-
# t3_psm = st.selectbox('Page segmentation mode (psm)', \
|
1066 |
-
# [' - Default', \
|
1067 |
-
# ' 4 Assume a single column of text of variable sizes', \
|
1068 |
-
# ' 5 Assume a single uniform block of vertically aligned text', \
|
1069 |
-
# ' 6 Assume a single uniform block of text', \
|
1070 |
-
# ' 7 Treat the image as a single text line', \
|
1071 |
-
# ' 8 Treat the image as a single word', \
|
1072 |
-
# ' 9 Treat the image as a single word in a circle', \
|
1073 |
-
# '10 Treat the image as a single character', \
|
1074 |
-
# '11 Sparse text. Find as much text as possible in no \
|
1075 |
-
# particular order', \
|
1076 |
-
# '13 Raw line. Treat the image as a single text line, \
|
1077 |
-
# bypassing hacks that are Tesseract-specific'])
|
1078 |
-
# t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
|
1079 |
-
# '1 Neural nets LSTM engine only', \
|
1080 |
-
# '2 Legacy + LSTM engines', \
|
1081 |
-
# '3 Default, based on what is available'], 3)
|
1082 |
-
# t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \
|
1083 |
-
# placeholder='Limit tesseract to recognize only this characters', \
|
1084 |
-
# help='Example for numbers only : 0123456789')
|
1085 |
-
|
1086 |
-
color_hex = col2.color_picker('Set a color for box outlines:', '#004C99')
|
1087 |
-
color_part = color_hex.lstrip('#')
|
1088 |
-
color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4))
|
1089 |
-
|
1090 |
-
submit_detect = st.form_submit_button("Launch detection")
|
1091 |
-
|
1092 |
-
##----------- Process text detection --------------------------------------------------------------
|
1093 |
-
if submit_detect:
|
1094 |
-
# Process text detection
|
1095 |
-
|
1096 |
-
# if t0_optimal_num_chars == 0:
|
1097 |
-
# t0_optimal_num_chars = None
|
1098 |
-
|
1099 |
-
# Construct the config Tesseract parameter
|
1100 |
-
# t3_config = ''
|
1101 |
-
# psm = t3_psm[:2]
|
1102 |
-
# if psm != ' -':
|
1103 |
-
# t3_config += '--psm ' + psm.strip()
|
1104 |
-
# oem = t3_oem[:1]
|
1105 |
-
# if oem != '3':
|
1106 |
-
# t3_config += ' --oem ' + oem
|
1107 |
-
# if t3_whitelist != '':
|
1108 |
-
# t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist
|
1109 |
-
|
1110 |
-
list_params_det = [[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}]]
|
1111 |
-
# [[easyocr_lang, \
|
1112 |
-
# {'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \
|
1113 |
-
# 'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \
|
1114 |
-
# 'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \
|
1115 |
-
# 'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \
|
1116 |
-
# 'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \
|
1117 |
-
# 'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \
|
1118 |
-
# }], \
|
1119 |
-
# [ppocr_lang, \
|
1120 |
-
# {'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \
|
1121 |
-
# 'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \
|
1122 |
-
# 'det_db_unclip_ratio': t1_det_db_unclip_ratio, \
|
1123 |
-
# 'det_east_score_thresh': t1_det_east_score_thresh, \
|
1124 |
-
# 'det_east_cover_thresh': t1_det_east_cover_thresh, \
|
1125 |
-
# 'det_east_nms_thresh': t1_det_east_nms_thresh, \
|
1126 |
-
# 'det_db_score_mode': t1_det_db_score_mode}],
|
1127 |
-
# [tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
|
1128 |
-
# ]
|
1129 |
-
|
1130 |
-
show_info1 = st.empty()
|
1131 |
-
show_info1.info("Readers initializations in progress (it may take a while) ...")
|
1132 |
-
list_readers = init_readers(list_params_det)
|
1133 |
-
|
1134 |
-
show_info1.info("Text detection in progress ...")
|
1135 |
-
list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \
|
1136 |
-
list_params_det, color)
|
1137 |
-
show_info1.empty()
|
1138 |
-
|
1139 |
-
# Clear previous recognition results
|
1140 |
-
st.session_state.df_results = pd.DataFrame([])
|
1141 |
-
|
1142 |
-
st.session_state.list_readers = list_readers
|
1143 |
-
st.session_state.list_coordinates = list_coordinates
|
1144 |
-
st.session_state.list_images = list_images
|
1145 |
-
st.session_state.list_params_det = list_params_det
|
1146 |
-
|
1147 |
-
if 'columns_size' not in st.session_state:
|
1148 |
-
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
|
1149 |
-
if 'column_width' not in st.session_state:
|
1150 |
-
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]]
|
1151 |
-
if 'columns_color' not in st.session_state:
|
1152 |
-
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
1153 |
-
["rgb(0,0,0)" for x in reader_type_list[1:]]
|
1154 |
-
|
1155 |
-
if st.session_state.list_coordinates:
|
1156 |
-
list_coordinates = st.session_state.list_coordinates
|
1157 |
-
list_images = st.session_state.list_images
|
1158 |
-
list_readers = st.session_state.list_readers
|
1159 |
-
list_params_det = st.session_state.list_params_det
|
1160 |
-
|
1161 |
-
##----------- Text detection results --------------------------------------------------------------
|
1162 |
-
st.subheader("Text detection")
|
1163 |
-
show_detect = st.empty()
|
1164 |
-
list_ok_detect = []
|
1165 |
-
with show_detect.container():
|
1166 |
-
column_title = '<p style="font-size: 20px;color:' + \
|
1167 |
-
st.session_state.columns_color[0] + \
|
1168 |
-
';">Detection with MMOCR</p>'
|
1169 |
-
show_detect.markdown(column_title, unsafe_allow_html=True)
|
1170 |
-
if isinstance(list_images[2], PIL.Image.Image):
|
1171 |
-
show_detect.image(list_images[2], width=st.session_state.column_width[0], use_column_width=True)
|
1172 |
-
list_ok_detect.append('MMOCR')
|
1173 |
-
else:
|
1174 |
-
show_detect.write(list_images[2], use_column_width=True)
|
1175 |
-
|
1176 |
-
|
1177 |
-
st.subheader("Text recognition")
|
1178 |
-
|
1179 |
-
# st.markdown("##### Using detection performed above by:")
|
1180 |
-
# st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \
|
1181 |
-
# horizontal=True, on_change=highlight)
|
1182 |
-
|
1183 |
-
##----------- Form with hyperparameters for recognition -----------------------
|
1184 |
-
st.markdown("##### Hyperparameters values for recognition:")
|
1185 |
-
with st.form("form2"):
|
1186 |
-
# with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \
|
1187 |
-
# expanded=False):
|
1188 |
-
# t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \
|
1189 |
-
# help="decoder (string, default = 'greedy') - options are 'greedy', \
|
1190 |
-
# 'beamsearch' and 'wordbeamsearch.")
|
1191 |
-
# t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \
|
1192 |
-
# help="beamWidth (int, default = 5) - How many beam to keep when decoder = \
|
1193 |
-
# 'beamsearch' or 'wordbeamsearch'.")
|
1194 |
-
# t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \
|
1195 |
-
# help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \
|
1196 |
-
# but use more memory.")
|
1197 |
-
# t0_workers = st.slider('workers', 0, 10, 0, step=1, \
|
1198 |
-
# help="workers (int, default = 0) - Number thread used in of dataloader.")
|
1199 |
-
# t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \
|
1200 |
-
# placeholder='Force EasyOCR to recognize only this subset of characters', \
|
1201 |
-
# help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n
|
1202 |
-
# Usefor specific problem (E.g. license plate, etc.)''')
|
1203 |
-
# t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \
|
1204 |
-
# placeholder='Block subset of character (will be ignored if allowlist is given)', \
|
1205 |
-
# help='''blocklist (string) - Block subset of character. This argument will be \
|
1206 |
-
# ignored if allowlist is given.''')
|
1207 |
-
# t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \
|
1208 |
-
# help="detail (int, default = 1) - Set this to 0 for simple output")
|
1209 |
-
# t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \
|
1210 |
-
# help='paragraph (bool, default = False) - Combine result into paragraph')
|
1211 |
-
# t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \
|
1212 |
-
# help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \
|
1213 |
-
# this value will be passed into model 2 times.\n
|
1214 |
-
# Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n
|
1215 |
-
# The with more confident level will be returned as a result.''')
|
1216 |
-
# t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \
|
1217 |
-
# help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \
|
1218 |
-
# contrast text box')
|
1219 |
-
|
1220 |
-
# with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \
|
1221 |
-
# expanded=False):
|
1222 |
-
# t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \
|
1223 |
-
# help="Type of recognition algorithm selected. (default=CRNN)")
|
1224 |
-
# t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \
|
1225 |
-
# help="When performing recognition, the batchsize of forward images. \
|
1226 |
-
# (default=30)")
|
1227 |
-
# t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \
|
1228 |
-
# help="The maximum text length that the recognition algorithm can recognize. \
|
1229 |
-
# (default=25)")
|
1230 |
-
# t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \
|
1231 |
-
# help="Whether to recognize spaces. (default=TRUE)")
|
1232 |
-
# t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
|
1233 |
-
# help="Filter the output by score (from the recognition model), and those \
|
1234 |
-
# below this score will not be returned. (default=0.5)")
|
1235 |
-
|
1236 |
-
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
|
1237 |
-
expanded=False):
|
1238 |
-
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
|
1239 |
-
'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \
|
1240 |
-
'SATRN','SATRN_sm','SEG','Tesseract'], 7, \
|
1241 |
-
help='Text recognition algorithm. (default = SAR)')
|
1242 |
-
st.write("###### *More about text recognition models* 👉 \
|
1243 |
-
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
|
1244 |
-
|
1245 |
-
# with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
|
1246 |
-
# expanded=False):
|
1247 |
-
# t3r_psm = st.selectbox('Page segmentation mode (psm)', \
|
1248 |
-
# [' - Default', \
|
1249 |
-
# ' 4 Assume a single column of text of variable sizes', \
|
1250 |
-
# ' 5 Assume a single uniform block of vertically aligned \
|
1251 |
-
# text', \
|
1252 |
-
# ' 6 Assume a single uniform block of text', \
|
1253 |
-
# ' 7 Treat the image as a single text line', \
|
1254 |
-
# ' 8 Treat the image as a single word', \
|
1255 |
-
# ' 9 Treat the image as a single word in a circle', \
|
1256 |
-
# '10 Treat the image as a single character', \
|
1257 |
-
# '11 Sparse text. Find as much text as possible in no \
|
1258 |
-
# particular order', \
|
1259 |
-
# '13 Raw line. Treat the image as a single text line, \
|
1260 |
-
# bypassing hacks that are Tesseract-specific'])
|
1261 |
-
# t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
|
1262 |
-
# '1 Neural nets LSTM engine only', \
|
1263 |
-
# '2 Legacy + LSTM engines', \
|
1264 |
-
# '3 Default, based on what is available'], 3)
|
1265 |
-
# t3r_whitelist = st.text_input('Limit tesseract to recognize only this \
|
1266 |
-
# characters :', \
|
1267 |
-
# placeholder='Limit tesseract to recognize only this characters', \
|
1268 |
-
# help='Example for numbers only : 0123456789')
|
1269 |
-
|
1270 |
-
submit_reco = st.form_submit_button("Launch recognition")
|
1271 |
-
|
1272 |
-
if submit_reco:
|
1273 |
-
process_detect.clear()
|
1274 |
-
##----------- Process recognition ------------------------------------------
|
1275 |
-
reader_ind = reader_type_dict[st.session_state.detect_reader]
|
1276 |
-
list_boxes = list_coordinates[0]
|
1277 |
-
|
1278 |
-
# # Construct the config Tesseract parameter
|
1279 |
-
# t3r_config = ''
|
1280 |
-
# psm = t3r_psm[:2]
|
1281 |
-
# if psm != ' -':
|
1282 |
-
# t3r_config += '--psm ' + psm.strip()
|
1283 |
-
# oem = t3r_oem[:1]
|
1284 |
-
# if oem != '3':
|
1285 |
-
# t3r_config += ' --oem ' + oem
|
1286 |
-
# if t3r_whitelist != '':
|
1287 |
-
# t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist
|
1288 |
-
|
1289 |
-
list_params_rec = \
|
1290 |
-
[
|
1291 |
-
{'recog': t2_recog},
|
1292 |
-
]
|
1293 |
-
|
1294 |
-
show_info2 = st.empty()
|
1295 |
-
|
1296 |
-
with show_info2.container():
|
1297 |
-
st.info("Text recognition in progress ...")
|
1298 |
-
df_results, list_reco_status = \
|
1299 |
-
process_recog(list_readers, list_images[1], list_boxes, list_params_rec)
|
1300 |
-
show_info2.empty()
|
1301 |
-
|
1302 |
-
st.session_state.df_results = df_results
|
1303 |
-
st.session_state.list_boxes = list_boxes
|
1304 |
-
# st.session_state.df_results_tesseract = df_results_tesseract
|
1305 |
-
st.session_state.list_reco_status = list_reco_status
|
1306 |
-
|
1307 |
-
if 'df_results' in st.session_state:
|
1308 |
-
if not st.session_state.df_results.empty:
|
1309 |
-
##----------- Show recognition results ------------------------------------------------------------
|
1310 |
-
results_cols = st.session_state.df_results.columns
|
1311 |
-
list_col_text = np.arange(1, len(cols_size), 2)
|
1312 |
-
list_col_confid = np.arange(2, len(cols_size), 2)
|
1313 |
-
|
1314 |
-
dict_draw_reco = {'in_image': st.session_state.list_images[1], \
|
1315 |
-
'in_boxes_coordinates': st.session_state.list_boxes, \
|
1316 |
-
'in_list_texts': [st.session_state.df_results[results_cols[1]].to_list() ], \
|
1317 |
-
'in_list_confid': [st.session_state.df_results[results_cols[2]].to_list()], \
|
1318 |
-
'in_dict_back_colors': dict_back_colors, \
|
1319 |
-
'in_reader_type_list': reader_type_list
|
1320 |
-
}
|
1321 |
-
show_reco = st.empty()
|
1322 |
-
|
1323 |
-
with st.form("form3"):
|
1324 |
-
st.plotly_chart(fig_colorscale, use_container_width=True)
|
1325 |
-
|
1326 |
-
col_font, col_threshold = st.columns(2)
|
1327 |
-
|
1328 |
-
col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld")
|
1329 |
-
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
|
1330 |
-
step=1, key="conf_threshold_sld")
|
1331 |
-
col_threshold.write("(text color is black below this % confidence threshold, \
|
1332 |
-
and white above)")
|
1333 |
-
|
1334 |
-
draw_reco_images(**dict_draw_reco)
|
1335 |
-
|
1336 |
-
submit_resize = st.form_submit_button("Refresh")
|
1337 |
-
|
1338 |
-
if submit_resize:
|
1339 |
-
draw_reco_images(**dict_draw_reco, \
|
1340 |
-
in_font_scale=st.session_state.font_scale_sld, \
|
1341 |
-
in_conf_threshold=st.session_state.conf_threshold_sld)
|
1342 |
-
|
1343 |
-
st.subheader("Recognition details")
|
1344 |
-
with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True):
|
1345 |
-
cols = st.columns(3)
|
1346 |
-
cols[0].markdown('#### Detected area')
|
1347 |
-
cols[1].markdown('#### text ' + "OCR")
|
1348 |
-
cols[2].markdown('#### confidence_score')
|
1349 |
-
for row in st.session_state.df_results.itertuples():
|
1350 |
-
#cols = st.columns(1 + len(reader_type_list)*2)
|
1351 |
-
cols = st.columns(3)
|
1352 |
-
cols[0].image(row.cropped_image, width=150)
|
1353 |
-
cols[1].write(getattr(row, results_cols[1]))
|
1354 |
-
cols[2].write("("+str( \
|
1355 |
-
getattr(row, results_cols[2]))+"%)")
|
1356 |
-
|
1357 |
-
st.download_button(
|
1358 |
-
label="Download results as CSV file",
|
1359 |
-
data=convert_df(st.session_state.df_results),
|
1360 |
-
file_name='OCR_comparator_results.csv',
|
1361 |
-
mime='text/csv',
|
1362 |
-
)
|
1363 |
-
|
1364 |
-
# if not st.session_state.df_results_tesseract.empty:
|
1365 |
-
# with st.expander("Detailed areas for Tesseract", expanded=False):
|
1366 |
-
# cols = st.columns([2,2,1])
|
1367 |
-
# cols[0].markdown('#### Detected area')
|
1368 |
-
# cols[1].markdown('#### with Tesseract')
|
1369 |
-
|
1370 |
-
# for row in st.session_state.df_results_tesseract.itertuples():
|
1371 |
-
# cols = st.columns([2,2,1])
|
1372 |
-
# cols[0].image(row.cropped, width=150)
|
1373 |
-
# cols[1].write(getattr(row, 'text'))
|
1374 |
-
# cols[2].write("("+str(getattr(row, 'conf'))+"%)")
|
1375 |
-
|
1376 |
-
# st.download_button(
|
1377 |
-
# label="Download Tesseract results as CSV file",
|
1378 |
-
# data=convert_df(st.session_state.df_results),
|
1379 |
-
# file_name='OCR_comparator_Tesseract_results.csv',
|
1380 |
-
# mime='text/csv',
|
1381 |
-
# )
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from multipage import MultiPage
|
3 |
+
from app_pages import home, about, ocr_comparator
|
4 |
+
|
5 |
+
app = MultiPage()
|
6 |
+
st.set_page_config(
|
7 |
+
page_title='OCR Comparator', layout ="wide",
|
8 |
+
initial_sidebar_state="expanded",
|
9 |
+
)
|
10 |
+
|
11 |
+
# Add all your application here
|
12 |
+
app.add_page("App", "cast", ocr_comparator.app)
|
13 |
+
# app.add_page("Home", "house", home.app)
|
14 |
+
app.add_page("About", "info-circle", about.app)
|
15 |
+
|
16 |
+
# The main app
|
17 |
+
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|