disham993 commited on
Commit
1849683
Β·
verified Β·
1 Parent(s): 50ef1d0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -12
README.md CHANGED
@@ -1,20 +1,144 @@
1
  ---
2
- title: Telecom Churn Dashboard
3
- emoji: πŸš€
4
- colorFrom: red
5
  colorTo: red
6
- sdk: docker
7
- app_port: 8501
8
- tags:
9
- - streamlit
10
  pinned: false
11
- short_description: Telecom Churn Dashboard for EDA.
12
  license: mit
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
- # Welcome to Streamlit!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
1
  ---
2
+ title: Customer Churn Analysis - Interactive EDA
3
+ emoji: πŸ“Š
4
+ colorFrom: blue
5
  colorTo: red
6
+ sdk: streamlit
7
+ sdk_version: 1.28.0
8
+ app_file: eda_app.py
 
9
  pinned: false
 
10
  license: mit
11
+ tags:
12
+ - data-analysis
13
+ - customer-churn
14
+ - telecommunications
15
+ - streamlit
16
+ - plotly
17
+ - eda
18
+ - data-visualization
19
+ - business-intelligence
20
  ---
21
 
22
+ # πŸ“Š Customer Churn Analysis - Interactive EDA
23
+
24
+ An interactive Streamlit application for comprehensive exploratory data analysis of telecommunications customer churn data. This tool provides business analysts and data scientists with powerful visualizations and insights to understand customer behavior patterns and identify churn risk factors.
25
+
26
+ ## πŸš€ Live Demo
27
+
28
+ Try the interactive application: [Customer Churn EDA](https://huggingface.co/spaces/disham993/telecom-churn-dashboard)
29
+
30
+ ## ✨ Features
31
+
32
+ ### πŸ“‹ Dataset Overview
33
+ - **Comprehensive Data Summary**: Key statistics, data types, and sample exploration
34
+ - **Missing Value Analysis**: Complete data quality assessment
35
+ - **Dataset Description**: Detailed explanation of telecommunications churn data
36
+
37
+ ### 🎯 Churn Analysis
38
+ - **Interactive Churn Distribution**: Pie charts and statistical breakdowns
39
+ - **Categorical Analysis**: Churn rates by service plans and customer segments
40
+ - **Feature Comparison**: Box plots and histograms comparing churned vs retained customers
41
+
42
+ ### πŸ“ Geographic Analysis
43
+ - **Interactive US Choropleth Maps**: State-wise churn rate visualization
44
+ - **Regional Patterns**: Top states by churn rate with detailed metrics
45
+ - **Area Code Analysis**: Geographic distribution insights
46
+
47
+ ### πŸ“ž Usage Patterns
48
+ - **Time-based Analysis**: Day, evening, night, and international usage patterns
49
+ - **Call Frequency Patterns**: Detailed call behavior analysis
50
+ - **Customer Service Interactions**: Service call impact on churn rates
51
+
52
+ ### πŸ’° Revenue Analysis
53
+ - **Revenue Impact Assessment**: Financial implications of customer churn
54
+ - **Revenue Component Breakdown**: Detailed analysis by service type
55
+ - **Customer Segmentation**: Revenue distribution across different customer groups
56
+
57
+ ### πŸ”— Correlation Analysis
58
+ - **Interactive Heatmaps**: Feature correlation visualization with Plotly
59
+ - **Churn Predictors**: Features most correlated with customer churn
60
+ - **Statistical Insights**: Positive and negative correlation analysis
61
+
62
+ ### πŸ“Š Advanced Insights
63
+ - **Customer Segmentation**: Usage vs Revenue scatter plots
64
+ - **High-Risk Customer Identification**: Patterns in churned customer behavior
65
+ - **Service Plan Analysis**: Churn rates by plan combinations
66
+ - **Automated Key Insights**: AI-generated business insights and recommendations
67
+
68
+ ## πŸ› οΈ Technology Stack
69
+
70
+ - **Frontend**: Streamlit for interactive web interface
71
+ - **Visualization**: Plotly for interactive charts and maps
72
+ - **Data Processing**: Pandas and NumPy for data manipulation
73
+ - **Statistics**: Comprehensive statistical analysis and correlation studies
74
+
75
+ ## πŸ“Š Dataset Information
76
+
77
+ ### About the Dataset
78
+ This telecommunications customer churn dataset contains **3,333 customer records** with **21 features** covering:
79
+
80
+ - **Demographics**: State, account length, area code
81
+ - **Service Plans**: International calling and voice mail plans
82
+ - **Usage Patterns**: Detailed minute usage and call frequency
83
+ - **Billing Information**: Charges breakdown by time period
84
+ - **Customer Service**: Interaction frequency and service quality
85
+ - **Target Variable**: Customer churn status (14.5% churn rate)
86
+
87
+ ### Data Quality
88
+ - βœ… **No Missing Values**: Complete dataset with 100% data coverage
89
+ - βœ… **Geographic Coverage**: All 51 US states represented
90
+ - βœ… **Balanced Features**: Mix of numerical, categorical, and boolean variables
91
+
92
+ ## πŸ“± Usage Guide
93
+
94
+ ### Navigation
95
+ 1. **Sidebar Selection**: Choose between Combined Dataset, Training Set (80%), or Test Set (20%)
96
+ 2. **Analysis Types**: Select from 7 comprehensive analysis categories
97
+ 3. **Interactive Exploration**: All charts are interactive with hover details and zoom capabilities
98
+
99
+ ### Key Interactions
100
+ - **Hover Information**: Detailed tooltips on all visualizations
101
+ - **Dynamic Filtering**: Real-time updates based on selections
102
+ - **Export Options**: Download charts as images
103
+ - **Responsive Design**: Works seamlessly on desktop and mobile
104
+
105
+ ## πŸ” Key Insights Discovered
106
+
107
+ ### Churn Risk Factors
108
+ - **High Service Calls**: Customers with 4+ service calls have significantly higher churn rates
109
+ - **International Plans**: International plan subscribers show elevated churn risk
110
+ - **Usage Patterns**: Specific usage behaviors correlate with churn likelihood
111
+ - **Geographic Patterns**: Certain states show consistently higher churn rates
112
+
113
+ ### Business Applications
114
+ - **Customer Retention**: Identify at-risk customers for proactive outreach
115
+ - **Service Improvement**: Understand pain points leading to customer churn
116
+ - **Geographic Strategy**: Target retention efforts in high-churn regions
117
+ - **Revenue Protection**: Quantify financial impact and prioritize retention efforts
118
+
119
+ ## 🀝 Contributing
120
+
121
+ Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
122
+
123
+
124
+ ## πŸ“„ License
125
+
126
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
127
+
128
+ ## πŸ™ Acknowledgments
129
+
130
+ - **Dataset**: Telecommunications customer churn data for educational and research purposes
131
+ - **Streamlit**: For providing an excellent framework for data applications
132
+ - **Plotly**: For powerful interactive visualization capabilities
133
+ - **Hugging Face**: For hosting and sharing data science applications
134
+
135
+ ## πŸ“ž Contact & Support
136
+
137
+ - **Discussions**: [Hugging Face Discussions](https://huggingface.co/spaces/disham993/telecom-churn-dashboard/discussions)
138
+ - **Documentation**: Comprehensive in-app help and tooltips
139
+
140
+ ---
141
 
142
+ **⭐ If you find this project useful, please give it a star!**
143
 
144
+ Built with ❀️ for the data science community