Spaces:
Runtime error
Runtime error
Update requirements.txt
Browse files- requirements.txt +0 -350
requirements.txt
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
Here are the contents for the requirements.txt file:
|
2 |
|
3 |
-
```
|
4 |
datasets
|
5 |
superlinked==18.3.0
|
6 |
google-generativeai
|
@@ -12,354 +10,6 @@ matplotlib
|
|
12 |
pandas
|
13 |
beartype
|
14 |
requests
|
15 |
-
```
|
16 |
|
17 |
-
Now for the main app.py file:
|
18 |
|
19 |
-
```python
|
20 |
-
import gradio as gr
|
21 |
-
import numpy as np
|
22 |
-
from PIL import Image as PILImage
|
23 |
-
import torch
|
24 |
-
from torchvision import transforms
|
25 |
-
import matplotlib.pyplot as plt
|
26 |
-
import pandas as pd
|
27 |
-
from io import BytesIO
|
28 |
-
import requests
|
29 |
-
from beartype.typing import Any, Hashable
|
30 |
-
from requests import RequestException
|
31 |
-
from superlinked import framework as sl
|
32 |
-
from datasets import load_dataset
|
33 |
|
34 |
-
# Constants
|
35 |
-
DATASET_ID = "tomytjandra/h-and-m-fashion-caption"
|
36 |
-
VIT_MODEL_ID = "hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
37 |
-
NUM_SAMPLES = 1000
|
38 |
-
SEED = 42
|
39 |
-
LIMIT = 3
|
40 |
-
|
41 |
-
# Load and prepare dataset
|
42 |
-
fashion_dataset = load_dataset(DATASET_ID)
|
43 |
-
fashion_sample_dataset = fashion_dataset["train"].shuffle(seed=SEED).select(range(NUM_SAMPLES))
|
44 |
-
|
45 |
-
# Organize metadata
|
46 |
-
fashion_json_data = [item for i, item in enumerate(fashion_sample_dataset)]
|
47 |
-
for i, item in enumerate(fashion_json_data):
|
48 |
-
fashion_json_data[i]["id"] = i
|
49 |
-
fashion_df = pd.DataFrame(fashion_json_data)
|
50 |
-
fashion_df["description"] = fashion_df["text"]
|
51 |
-
json_data = fashion_df.to_dict(orient="records")
|
52 |
-
|
53 |
-
# Superlinked setup
|
54 |
-
class Image(sl.Schema):
|
55 |
-
id: sl.IdField
|
56 |
-
image: sl.Blob
|
57 |
-
description: sl.String
|
58 |
-
|
59 |
-
image = Image()
|
60 |
-
image_embedding_space = sl.ImageSpace(image=image.image, model=VIT_MODEL_ID, model_handler=sl.ModelHandler.OPEN_CLIP)
|
61 |
-
description_space = sl.TextSimilaritySpace(text=image.description, model="Alibaba-NLP/gte-large-en-v1.5")
|
62 |
-
composite_index = sl.Index([image_embedding_space, description_space])
|
63 |
-
source = sl.InMemorySource(image)
|
64 |
-
executor = sl.InMemoryExecutor(sources=[source], indices=[composite_index])
|
65 |
-
app = executor.run()
|
66 |
-
source.put(json_data)
|
67 |
-
|
68 |
-
# Query construction
|
69 |
-
combined_query = (
|
70 |
-
sl.Query(
|
71 |
-
composite_index,
|
72 |
-
weights={
|
73 |
-
description_space: sl.Param("description_weight"),
|
74 |
-
image_embedding_space: sl.Param("image_embedding_weight"),
|
75 |
-
},
|
76 |
-
)
|
77 |
-
.find(image)
|
78 |
-
.similar(description_space, sl.Param("text_search"))
|
79 |
-
.similar(image_embedding_space.image, sl.Param("image_search"))
|
80 |
-
.similar(image_embedding_space.description, sl.Param("text_in_image_search"))
|
81 |
-
.select_all()
|
82 |
-
.limit(3)
|
83 |
-
)
|
84 |
-
|
85 |
-
def process_search_results(results_df, dataset, similarity_threshold=0.5):
|
86 |
-
"""
|
87 |
-
Process search results with filtering and enhanced descriptions
|
88 |
-
"""
|
89 |
-
filtered_df = results_df[results_df['similarity_score'] >= similarity_threshold]
|
90 |
-
|
91 |
-
if filtered_df.empty:
|
92 |
-
return {
|
93 |
-
"images": [],
|
94 |
-
"descriptions": [],
|
95 |
-
"similarity_plot": None,
|
96 |
-
"error": "No results meet the similarity threshold"
|
97 |
-
}
|
98 |
-
|
99 |
-
images = []
|
100 |
-
descriptions = []
|
101 |
-
scores = []
|
102 |
-
|
103 |
-
for _, row in filtered_df.iterrows():
|
104 |
-
product_id = int(row['id'])
|
105 |
-
img = dataset["image"][product_id]
|
106 |
-
if isinstance(img, np.ndarray):
|
107 |
-
img = PILImage.fromarray(img)
|
108 |
-
|
109 |
-
product_info = dataset[product_id]
|
110 |
-
description = {
|
111 |
-
"Product ID": str(product_id),
|
112 |
-
"Description": product_info.get("text", "N/A"),
|
113 |
-
"Category": product_info.get("category", "N/A"),
|
114 |
-
"Similarity Score": f"{float(row['similarity_score']):.3f}",
|
115 |
-
"Price Range": product_info.get("price_range", "N/A"),
|
116 |
-
"Colors": product_info.get("colors", []),
|
117 |
-
"Brand": product_info.get("brand", "N/A")
|
118 |
-
}
|
119 |
-
|
120 |
-
images.append(img)
|
121 |
-
descriptions.append(description)
|
122 |
-
scores.append(float(row['similarity_score']))
|
123 |
-
|
124 |
-
similarity_plot = create_similarity_visualization(scores, descriptions)
|
125 |
-
|
126 |
-
return {
|
127 |
-
"images": images,
|
128 |
-
"descriptions": descriptions,
|
129 |
-
"similarity_plot": similarity_plot,
|
130 |
-
"error": None
|
131 |
-
}
|
132 |
-
|
133 |
-
def create_similarity_visualization(scores, descriptions):
|
134 |
-
"""
|
135 |
-
Create an enhanced visualization of similarity scores
|
136 |
-
"""
|
137 |
-
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), height_ratios=[2, 1])
|
138 |
-
|
139 |
-
bars = ax1.bar(range(len(scores)), scores)
|
140 |
-
ax1.set_title('Similarity Scores Distribution')
|
141 |
-
ax1.set_xlabel('Result Index')
|
142 |
-
ax1.set_ylabel('Similarity Score')
|
143 |
-
|
144 |
-
for bar in bars:
|
145 |
-
height = bar.get_height()
|
146 |
-
ax1.text(bar.get_x() + bar.get_width()/2., height,
|
147 |
-
f'{height:.3f}',
|
148 |
-
ha='center', va='bottom')
|
149 |
-
|
150 |
-
ax1.axhline(y=0.5, color='r', linestyle='--', label='Threshold')
|
151 |
-
ax1.legend()
|
152 |
-
|
153 |
-
categories = [d.get("Category") for d in descriptions]
|
154 |
-
unique_categories = list(set(categories))
|
155 |
-
category_counts = [categories.count(cat) for cat in unique_categories]
|
156 |
-
|
157 |
-
ax2.pie(category_counts, labels=unique_categories, autopct='%1.1f%%')
|
158 |
-
ax2.set_title('Category Distribution')
|
159 |
-
|
160 |
-
plt.tight_layout()
|
161 |
-
return fig
|
162 |
-
|
163 |
-
def search_products(search_text, search_image, search_type, weight_text=1.0, weight_image=1.0, similarity_threshold=0.5):
|
164 |
-
"""
|
165 |
-
Enhanced search function with filtering and error handling
|
166 |
-
"""
|
167 |
-
try:
|
168 |
-
if search_type == "Text Only" and not search_text:
|
169 |
-
raise ValueError("Please enter search text")
|
170 |
-
if search_type == "Image Only" and search_image is None:
|
171 |
-
raise ValueError("Please upload an image")
|
172 |
-
|
173 |
-
if search_type == "Text Only":
|
174 |
-
results = app.query(
|
175 |
-
combined_query,
|
176 |
-
description_weight=1,
|
177 |
-
text_search=search_text
|
178 |
-
)
|
179 |
-
elif search_type == "Image Only":
|
180 |
-
if isinstance(search_image, np.ndarray):
|
181 |
-
search_image = PILImage.fromarray(search_image)
|
182 |
-
|
183 |
-
results = app.query(
|
184 |
-
combined_query,
|
185 |
-
image_embedding_weight=1,
|
186 |
-
image_search=search_image
|
187 |
-
)
|
188 |
-
else: # Combined Search
|
189 |
-
if isinstance(search_image, np.ndarray):
|
190 |
-
search_image = PILImage.fromarray(search_image)
|
191 |
-
|
192 |
-
results = app.query(
|
193 |
-
combined_query,
|
194 |
-
description_weight=weight_text,
|
195 |
-
image_embedding_weight=weight_image,
|
196 |
-
text_search=search_text,
|
197 |
-
image_search=search_image
|
198 |
-
)
|
199 |
-
|
200 |
-
results_df = results.to_pandas()
|
201 |
-
return process_search_results(results_df, fashion_sample_dataset, similarity_threshold)
|
202 |
-
|
203 |
-
except Exception as e:
|
204 |
-
return {
|
205 |
-
"images": [],
|
206 |
-
"descriptions": [],
|
207 |
-
"similarity_plot": None,
|
208 |
-
"error": str(e)
|
209 |
-
}
|
210 |
-
|
211 |
-
def create_interface():
|
212 |
-
with gr.Blocks() as demo:
|
213 |
-
gr.Markdown("# Fashion Product Semantic Search")
|
214 |
-
|
215 |
-
with gr.Row():
|
216 |
-
with gr.Column(scale=1):
|
217 |
-
text_input = gr.Textbox(
|
218 |
-
label="Search Text",
|
219 |
-
placeholder="Enter product description..."
|
220 |
-
)
|
221 |
-
image_input = gr.Image(
|
222 |
-
label="Search Image",
|
223 |
-
type="pil"
|
224 |
-
)
|
225 |
-
search_type = gr.Radio(
|
226 |
-
choices=["Text Only", "Image Only", "Combined Search"],
|
227 |
-
label="Search Type",
|
228 |
-
value="Text Only"
|
229 |
-
)
|
230 |
-
|
231 |
-
with gr.Accordion("Advanced Settings", open=False):
|
232 |
-
similarity_threshold = gr.Slider(
|
233 |
-
minimum=0, maximum=1, value=0.5,
|
234 |
-
label="Similarity Threshold"
|
235 |
-
)
|
236 |
-
with gr.Row(visible=False) as weight_controls:
|
237 |
-
text_weight = gr.Slider(
|
238 |
-
minimum=0, maximum=2, value=1,
|
239 |
-
label="Text Weight"
|
240 |
-
)
|
241 |
-
image_weight = gr.Slider(
|
242 |
-
minimum=0, maximum=2, value=1,
|
243 |
-
label="Image Weight"
|
244 |
-
)
|
245 |
-
|
246 |
-
search_button = gr.Button("Search", variant="primary")
|
247 |
-
|
248 |
-
with gr.Row():
|
249 |
-
with gr.Column(scale=2):
|
250 |
-
gallery = gr.Gallery(
|
251 |
-
label="Search Results",
|
252 |
-
columns=3,
|
253 |
-
height="400px"
|
254 |
-
)
|
255 |
-
product_details = gr.JSON(
|
256 |
-
label="Product Details"
|
257 |
-
)
|
258 |
-
similarity_plot = gr.Plot(
|
259 |
-
label="Similarity Analysis"
|
260 |
-
)
|
261 |
-
|
262 |
-
error_display = gr.Textbox(
|
263 |
-
label="Status",
|
264 |
-
visible=False
|
265 |
-
)
|
266 |
-
|
267 |
-
def handle_search(text, image, search_type, text_weight, image_weight, threshold):
|
268 |
-
results = search_products(text, image, search_type, text_weight, image_weight, threshold)
|
269 |
-
|
270 |
-
if results["error"]:
|
271 |
-
return {
|
272 |
-
error_display: gr.update(value=results["error"], visible=True),
|
273 |
-
gallery: None,
|
274 |
-
product_details: None,
|
275 |
-
similarity_plot: None
|
276 |
-
}
|
277 |
-
|
278 |
-
return {
|
279 |
-
error_display: gr.update(visible=False),
|
280 |
-
gallery: results["images"],
|
281 |
-
product_details: results["descriptions"] if results["descriptions"] else None,
|
282 |
-
similarity_plot: results["similarity_plot"]
|
283 |
-
}
|
284 |
-
|
285 |
-
search_type.change(
|
286 |
-
fn=lambda x: gr.Row.update(visible=x == "Combined Search"),
|
287 |
-
inputs=[search_type],
|
288 |
-
outputs=[weight_controls]
|
289 |
-
)
|
290 |
-
|
291 |
-
search_button.click(
|
292 |
-
fn=handle_search,
|
293 |
-
inputs=[
|
294 |
-
text_input,
|
295 |
-
image_input,
|
296 |
-
search_type,
|
297 |
-
text_weight,
|
298 |
-
image_weight,
|
299 |
-
similarity_threshold
|
300 |
-
],
|
301 |
-
outputs=[
|
302 |
-
error_display,
|
303 |
-
gallery,
|
304 |
-
product_details,
|
305 |
-
similarity_plot
|
306 |
-
]
|
307 |
-
)
|
308 |
-
|
309 |
-
return demo
|
310 |
-
|
311 |
-
if __name__ == "__main__":
|
312 |
-
demo = create_interface()
|
313 |
-
demo.launch()
|
314 |
-
```
|
315 |
-
|
316 |
-
For the README.md file:
|
317 |
-
|
318 |
-
```markdown
|
319 |
-
# Fashion Product Semantic Search
|
320 |
-
|
321 |
-
This is a Gradio application for semantic search of fashion products using both text and image inputs.
|
322 |
-
|
323 |
-
## Features
|
324 |
-
|
325 |
-
- Text-based search
|
326 |
-
- Image-based search
|
327 |
-
- Combined text and image search
|
328 |
-
- Adjustable similarity thresholds
|
329 |
-
- Detailed product information display
|
330 |
-
- Similarity score visualization
|
331 |
-
|
332 |
-
## Requirements
|
333 |
-
|
334 |
-
See requirements.txt for detailed dependencies.
|
335 |
-
|
336 |
-
## Usage
|
337 |
-
|
338 |
-
The application provides a web interface where users can:
|
339 |
-
1. Enter text descriptions
|
340 |
-
2. Upload images
|
341 |
-
3. Choose search type (Text Only, Image Only, or Combined Search)
|
342 |
-
4. Adjust advanced settings
|
343 |
-
5. View search results with detailed product information
|
344 |
-
```
|
345 |
-
|
346 |
-
And finally, for the .gitignore file:
|
347 |
-
|
348 |
-
```
|
349 |
-
__pycache__/
|
350 |
-
*.pyc
|
351 |
-
.ipynb_checkpoints/
|
352 |
-
.DS_Store
|
353 |
-
```
|
354 |
-
|
355 |
-
These files should be organized in your project directory as follows:
|
356 |
-
|
357 |
-
```
|
358 |
-
project_directory/
|
359 |
-
├── app.py
|
360 |
-
├── requirements.txt
|
361 |
-
├── README.md
|
362 |
-
└── .gitignore
|
363 |
-
```
|
364 |
-
|
365 |
-
You can now use these files to deploy your application on Hugging Face Spaces or run it locally.
|
|
|
|
|
1 |
|
|
|
2 |
datasets
|
3 |
superlinked==18.3.0
|
4 |
google-generativeai
|
|
|
10 |
pandas
|
11 |
beartype
|
12 |
requests
|
|
|
13 |
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|