Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,636 Bytes
d5c4625 b896165 d5c4625 76a03fa 251f917 bc51dfa 65e8d45 ab7fdea 65e8d45 ab7fdea 65e8d45 251f917 e0d3f3e b896165 d5c4625 251f917 4f11b08 d5c4625 3d8d21b d5c4625 bfa4ccc d5c4625 73b837f 7b4b54b d5c4625 76a03fa e0d3f3e d5c4625 251f917 b896165 d5c4625 b896165 d5c4625 3d8d21b d5c4625 4f11b08 d5c4625 b896165 d5c4625 b896165 d5c4625 73b837f 7b4b54b b896165 7b4b54b b896165 7b4b54b 73b837f 7b4b54b d5c4625 b896165 d5c4625 449fa2a d5c4625 bfa4ccc d5c4625 449fa2a bfa4ccc a84c724 d5c4625 449fa2a 9afc0f5 ab7fdea 57edf3e 9afc0f5 57edf3e 9afc0f5 a84c724 b896165 73b837f b896165 d5c4625 b896165 d5c4625 2504e22 d5c4625 57edf3e d5c4625 9afc0f5 d5c4625 b896165 57edf3e 449fa2a 57edf3e 449fa2a 57edf3e b896165 0bbf47d 3d8d21b b896165 73b837f b896165 76a03fa b896165 76a03fa d5c4625 b896165 d5c4625 73b837f b896165 d5c4625 76a03fa d5c4625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import base64
import gc
import json
import os
from io import BytesIO
from pathlib import Path
import gradio as gr
import torch
from json_repair import repair_json
from qwen_vl_utils import process_vision_info
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
Qwen3VLForConditionalGeneration,
)
from kofi import SCRIPT
# Handle spaces.GPU decorator for GPU allocation in Spaces
if "SPACES_ZERO_GPU" in os.environ.keys():
import spaces
else:
class spaces:
@staticmethod
def GPU(func=None, duration=300):
def decorator(f):
def wrapper(*args, **kwargs):
return f(*args, **kwargs)
return wrapper
if func is None:
return decorator
return decorator(func)
# Define constants
HEADLINE = "# Qwen-VL Object-Detection"
SUBLINE = "Compare [Qwen3-VL](https://huggingface.co/collections/Qwen/qwen3-vl), [Qwen2.5-VL](https://huggingface.co/collections/Qwen/qwen25-vl) and [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl) models by [Qwen](https://huggingface.co/Qwen) for object detection."
EXAMPLES_DIR = Path(__file__).parent / "examples"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_IDS = [
"Qwen/Qwen2-VL-2B-Instruct", # https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
"Qwen/Qwen2-VL-7B-Instruct", # https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
"Qwen/Qwen2.5-VL-3B-Instruct", # https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
"Qwen/Qwen2.5-VL-7B-Instruct", # https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
"Qwen/Qwen2.5-VL-32B-Instruct", # https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
"Qwen/Qwen2.5-VL-72B-Instruct", # https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
"Qwen/Qwen3-VL-2B-Instruct", # https://huggingface.co/Qwen/Qwen3-VL-2B-Instruct
"Qwen/Qwen3-VL-4B-Instruct", # https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct
"Qwen/Qwen3-VL-8B-Instruct", # https://huggingface.co/Qwen/Qwen3-VL-8B-Instruct
"Qwen/Qwen3-VL-32B-Instruct", # https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct
]
DEFAULT_SYSTEM_PROMPT = 'You are a helpful assistant to detect objects in images. When asked to detect elements based on a description, you return a valid JSON object containing bounding boxes for all elements in the form `[{"bbox_2d": [xmin, ymin, xmax, ymax], "label": "placeholder"}, ...]`. For example, a valid response could be: `[{"bbox_2d": [10, 30, 20, 60], "label": "placeholder"}, {"bbox_2d": [40, 15, 52, 27], "label": "placeholder"}]`.'
EXAMPLES = [
[
EXAMPLES_DIR / "niklas-ohlrogge-niamoh-de-fDYRfHoRC4k-unsplash.jpg",
"Qwen/Qwen3-VL-4B-Instruct",
DEFAULT_SYSTEM_PROMPT,
"detect sailboat, rowboat, person",
512,
"Yes",
1920,
],
[
EXAMPLES_DIR / "elevate-nYgy58eb9aw-unsplash.jpg",
"Qwen/Qwen3-VL-4B-Instruct",
DEFAULT_SYSTEM_PROMPT,
"detect shirt, jeans, jacket, skirt, sunglasses, earring, drink",
1024,
"Yes",
1920,
],
[
EXAMPLES_DIR / "markus-spiske-oPDQGXW7i40-unsplash.jpg",
"Qwen/Qwen3-VL-4B-Instruct",
DEFAULT_SYSTEM_PROMPT,
"detect basketball, player with white jersey, player with black jersey",
512,
"Yes",
1920,
],
[
EXAMPLES_DIR / "william-hook-9e9PD9blAto-unsplash.jpg",
"Qwen/Qwen3-VL-4B-Instruct",
DEFAULT_SYSTEM_PROMPT,
"detect app to find great places, app to take beautiful photos, app to listen music",
512,
"Yes",
1920,
],
[
EXAMPLES_DIR / "tasso-mitsarakis-dw7Y4W6Rhmk-unsplash.jpg",
"Qwen/Qwen3-VL-4B-Instruct",
DEFAULT_SYSTEM_PROMPT,
"detect person, bicycle, netherlands flag",
1920,
"Yes",
1920,
],
]
# Global variables to track loaded model
current_model = None
current_processor = None
current_model_id = None
class AutoModel:
@staticmethod
def from_pretrained(model_id, dtype="auto", device_map="cpu"):
if model_id.startswith("Qwen/Qwen2-VL"):
model_loader = Qwen2VLForConditionalGeneration
elif model_id.startswith("Qwen/Qwen2.5-VL"):
model_loader = Qwen2_5_VLForConditionalGeneration
elif model_id.startswith("Qwen/Qwen3-VL"):
model_loader = Qwen3VLForConditionalGeneration
else:
raise ValueError(f"Unsupported model ID: {model_id}")
return model_loader.from_pretrained(
model_id, dtype=dtype, device_map=device_map
)
def resize_image(image, target_size=1000):
width, height = image.size
if max(width, height) <= target_size:
return image
if width >= height:
new_width = target_size
new_height = int((target_size / width) * height)
else:
new_height = target_size
new_width = int((target_size / height) * width)
return image.resize((new_width, new_height))
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
with gr.Blocks(js=SCRIPT) as demo:
gr.Markdown(HEADLINE)
gr.Markdown(SUBLINE)
with gr.Row():
with gr.Column():
gr.Markdown("## Inputs")
image_input = gr.Image(
label="Input Image",
type="pil",
)
gr.Markdown("## Settings")
input_model_id = gr.Dropdown(
choices=MODEL_IDS,
label="✨ Select Model ID",
)
system_prompt = gr.Textbox(
label="System Prompt",
lines=3,
value=DEFAULT_SYSTEM_PROMPT,
)
default_user_prompt = "detect object"
user_prompt = gr.Textbox(
label="User Prompt",
lines=3,
value=default_user_prompt,
)
max_new_tokens = gr.Slider(
label="Max New Tokens",
minimum=32,
maximum=4096,
value=256,
step=32,
interactive=True,
)
image_resize = gr.Radio(
label="Resize Image",
choices=["Yes", "No"],
value="Yes",
interactive=True,
scale=2,
)
image_target_size = gr.Slider(
label="Image Target Size",
minimum=256,
maximum=4096,
value=1024,
step=1,
interactive=True,
scale=2,
)
with gr.Column():
gr.Markdown("## Outputs")
output_annotated_image = gr.AnnotatedImage(
format="jpeg",
key="output_annotated_image",
label="Output Image",
)
gr.Markdown("## Detections")
output_text = gr.Textbox(
label="Output Text",
lines=10,
key="output_text",
)
with gr.Row():
run_button = gr.Button("Run")
def load_model(
model_id: str,
):
global current_model, current_processor, current_model_id
# Only load model if it's different from the currently loaded one
if current_model_id != model_id or current_model is None:
# Clear previous model from memory
if current_model is not None:
del current_model
current_model = None
if current_processor is not None:
del current_processor
current_processor = None
# Force garbage collection and clear CUDA cache
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gr.Info(
f"Downloading and loading <strong>{model_id.removeprefix('Qwen/')}</strong> model files ...",
duration=10,
)
current_model = AutoModel.from_pretrained(
model_id, dtype="auto", device_map="cpu"
)
current_processor = AutoProcessor.from_pretrained(model_id)
current_model_id = model_id
return current_model, current_processor
@spaces.GPU(duration=300)
def generate(
model,
processor,
image,
model_id: str,
system_prompt: str,
user_prompt: str,
max_new_tokens: int,
image_resize: str,
image_target_size: int | None,
):
# Move model to CUDA if available (inside @spaces.GPU decorated function)
model = model.to(DEVICE)
model.eval()
base64_image = image_to_base64(
resize_image(image, image_target_size)
if image_resize == "Yes" and image_target_size
else image
)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": f"data:image;base64,{base64_image}",
},
{"type": "text", "text": system_prompt},
{"type": "text", "text": user_prompt},
],
}
]
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(DEVICE)
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
output_text = str(output_text[0])
output_text = repair_json(output_text)
output_json = json.loads(output_text)
scale = False if model_id.startswith("Qwen/Qwen2.5-VL") else True
x_scale = float(image.width / 1000) if scale else 1.0
y_scale = float(image.height / 1000) if scale else 1.0
bboxes = []
for detection in output_json:
if "bbox_2d" not in detection:
continue
if len(detection["bbox_2d"]) != 4:
continue
if "label" not in detection:
continue
xmin, ymin, xmax, ymax = detection["bbox_2d"]
label = detection.get("label", "")
bbox = [
int(xmin * x_scale),
int(ymin * y_scale),
int(xmax * x_scale),
int(ymax * y_scale),
]
bboxes.append((bbox, label))
return [(image, bboxes), str(json.dumps(output_json))]
def run(
image,
model_id: str,
system_prompt: str,
user_prompt: str,
max_new_tokens: int = 1024,
image_resize: str = "Yes",
image_target_size: int | None = None,
):
# Load the model and processor (on CPU)
model, processor = load_model(model_id)
# Run inference (on GPU *if available)
return generate(
model,
processor,
image,
model_id,
system_prompt,
user_prompt,
max_new_tokens,
image_resize,
image_target_size,
)
with gr.Row():
with gr.Column():
gr.Markdown("## Examples")
gr.Examples(
fn=run,
cache_examples=True,
cache_mode="eager",
run_on_click=False,
examples=EXAMPLES,
inputs=[
image_input,
input_model_id,
system_prompt,
user_prompt,
max_new_tokens,
image_resize,
image_target_size,
],
outputs=[
output_annotated_image,
output_text,
],
)
with gr.Row():
with gr.Column():
if DEVICE != "cuda":
gr.Markdown(
"👉 It's recommended to run this application on a machine with a CUDA-compatible GPU for optimal performance. You can clone this space locally or duplicate this space with a CUDA-enabled runtime."
)
gr.HTML('<div id="kofi" style="text-align: center;"></div>')
# Connect the button to the detection function
run_button.click(
fn=run,
inputs=[
image_input,
input_model_id,
system_prompt,
user_prompt,
max_new_tokens,
image_resize,
image_target_size,
],
outputs=[
output_annotated_image,
output_text,
],
)
if __name__ == "__main__":
demo.launch(
share=False,
)
|