Spaces:
Runtime error
Runtime error
| import torch | |
| import spaces | |
| import gradio as gr | |
| from diffusers import ModularPipelineBlocks | |
| from diffusers.utils import export_to_video, load_image | |
| from diffusers.modular_pipelines import WanModularPipeline | |
| class MatrixGameWanModularPipeline(WanModularPipeline): | |
| """ | |
| A ModularPipeline for MatrixGameWan. | |
| <Tip warning={true}> | |
| This is an experimental feature and is likely to change in the future. | |
| </Tip> | |
| """ | |
| def default_sample_height(self): | |
| return 44 | |
| def default_sample_width(self): | |
| return 80 | |
| blocks = ModularPipelineBlocks.from_pretrained("diffusers/matrix-game-2-modular", trust_remote_code=True) | |
| image_to_action_block = ModularPipelineBlocks.from_pretrained("dn6/matrix-game-image-to-action", trust_remote_code=True) | |
| blocks.sub_blocks.insert("image_to_action", image_to_action_block, 0) | |
| pipe = MatrixGameWanModularPipeline(blocks, "diffusers-internal-dev/matrix-game-2-modular") | |
| pipe.load_components(trust_remote_code=True, device_map="cuda", torch_dtype={"default": torch.bfloat16, "vae": torch.float32}) | |
| def predict(image, prompt): | |
| output = pipe(image=image, prompt=prompt, num_frames=141) | |
| return export_to_video(output.values['videos'][0], "output.mp4") | |
| examples = [] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #logo-title { | |
| text-align: center; | |
| } | |
| #logo-title img { | |
| width: 400px; | |
| } | |
| #edit_text{margin-top: -62px !important} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_images = gr.Gallery(label="Input Images", | |
| show_label=False, | |
| type="pil", | |
| interactive=True) | |
| with gr.Column(): | |
| result = gr.Gallery(label="Result", show_label=False, type="pil") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| placeholder="describe the edit instruction", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run!", variant="primary") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=predict, | |
| inputs=[ | |
| input_images, | |
| prompt, | |
| ], | |
| outputs=[result], # Added use_output_btn to outputs | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |