from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.optimizers import Adam # Assuming base_model is your pre-loaded Mixtral 8x7b model base_model.trainable = False # Freeze the layers # Add custom layers x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(num_classes, activation='softmax')(x) # This is the model we will train model = Model(inputs=base_model.input, outputs=predictions) # Compile the model model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) # Train the model model.fit(train_dataset, validation_data=val_dataset, epochs=10)