File size: 2,556 Bytes
9a78b42
 
d5b900f
 
 
 
 
 
 
a5f5ad5
 
 
 
 
 
fcca540
 
 
a5f5ad5
 
 
 
 
 
 
fcca540
a5f5ad5
 
 
 
080a3e4
a5f5ad5
 
 
 
d5b900f
a5f5ad5
 
 
 
 
 
3cbf763
a5f5ad5
 
 
 
 
 
 
 
 
 
b1af7d4
adde5a6
9a78b42
adde5a6
bc22792
7fc5847
d5b900f
9a78b42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
import cv2
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
from collections import defaultdict
tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
model = AutoModelForMaskedLM.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")

def mlm(image, text):
    print(text)
    questions_dict = {
        #'location': f'[CLS] Only [MASK] cells have a {cls_name}. [SEP]', #num of mask?
        # 'location': f'[CLS] The {cls_name} normally appears at or near the [MASK] of a cell. [SEP]',
        # 'color': f'[CLS] When a cell is histologically stained, the {cls_name} are in [MASK] color. [SEP]',
        # 'shape': f'[CLS] Mostly the shape of {cls_name} is [MASK]. [SEP]',
        'location': f'This {text} is at [MASK] place',
        'color': f'This {text} is in [MASK] color',
        'shape': f'This {text} is in [MASK] shape',
        #'def': f'{cls_name} is a  . [SEP]',
    }
    ans = list()
    res = defaultdict()
    device = 'cpu'
    for k, v in questions_dict.items():
        predicted_tokens = []
        print(v)
        tokenized_text = tokenizer.tokenize(v)
        indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
        # Create the segments tensors.
        segments_ids = [0] * len(tokenized_text)
        
        # Convert inputs to PyTorch tensors
    
        tokens_tensor = torch.tensor([indexed_tokens]).to(device)
        segments_tensors = torch.tensor([segments_ids]).to(device)

        masked_index = tokenized_text.index('[MASK]')
        with torch.no_grad():
            predictions = model(tokens_tensor, segments_tensors)
        
        _, predicted_index = torch.topk(predictions[0][0][masked_index], 1)#.item()
        predicted_index = predicted_index.detach().cpu().numpy()
        print(predicted_index)
        for idx in predicted_index:
            predicted_tokens.append(tokenizer.convert_ids_to_tokens([idx])[0])
        # for i in range(1):
        #     res[text][k].append(predicted_tokens)
        print(predicted_tokens)
        res[k] = predicted_tokens[0]
    color, shape, loc = res['color'], res['shape'], res['location']
    ans = f'{color} color, {shape} shape, {text} at {loc}'
    print(ans)
    return image, ans

def to_black(image, text):
    output = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    outputs = [output, text]
    return outputs

interface = gr.Interface(fn=mlm, inputs=["image", "text"], outputs=["image", "text"])
interface.launch()