Spaces:
Build error
Build error
Upload t4d.py
Browse files
t4d.py
ADDED
|
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
app.py – Quranic Data Training Pipeline Endpoint for ZeroGPU Spaces
|
| 4 |
+
--------------------------------------------------------------------
|
| 5 |
+
This script integrates a full Quranic data processing and training pipeline
|
| 6 |
+
into a Gradio interface endpoint. It is optimized for CPU-based training on
|
| 7 |
+
Hugging Face ZeroGPU (using the Gradio SDK) and uses chunked incremental
|
| 8 |
+
training, memory management, and gradient checkpointing to efficiently update
|
| 9 |
+
Google's Gemma-2-2b model with Quranic data.
|
| 10 |
+
|
| 11 |
+
Requirements:
|
| 12 |
+
- Transformers (>=4.42.0)
|
| 13 |
+
- Gradio (>=5.12.0)
|
| 14 |
+
- PyTorch (==2.2.2)
|
| 15 |
+
- psutil (==5.9.5)
|
| 16 |
+
- Accelerate (>=0.26.0)
|
| 17 |
+
- Hugging Face PRO subscription with ZeroGPU enabled (ensure your HF token is set as an environment variable HF_TOKEN)
|
| 18 |
+
- Ubuntu CPU/Linux with access to ZeroGPU hardware via Spaces
|
| 19 |
+
- Input data files placed in the project root.
|
| 20 |
+
- Sufficient storage in "working_directory"
|
| 21 |
+
|
| 22 |
+
Author: [M-Saddam Hussain]
|
| 23 |
+
Date: March 2025
|
| 24 |
+
Data References: [Tanzil.net, IslamSource, QuranicCorpus]
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
import json
|
| 28 |
+
import logging
|
| 29 |
+
import os
|
| 30 |
+
import traceback
|
| 31 |
+
import gc
|
| 32 |
+
import time
|
| 33 |
+
import psutil
|
| 34 |
+
import math
|
| 35 |
+
from datetime import datetime
|
| 36 |
+
from typing import Dict, List, Optional
|
| 37 |
+
from dataclasses import dataclass, asdict
|
| 38 |
+
|
| 39 |
+
import torch
|
| 40 |
+
# Limit PyTorch threads for CPU stability.
|
| 41 |
+
torch.set_num_threads(8)
|
| 42 |
+
|
| 43 |
+
from torch.utils.data import Dataset
|
| 44 |
+
from transformers import (
|
| 45 |
+
AutoTokenizer,
|
| 46 |
+
AutoModelForCausalLM,
|
| 47 |
+
TrainingArguments,
|
| 48 |
+
Trainer,
|
| 49 |
+
DataCollatorForLanguageModeling,
|
| 50 |
+
__version__ as transformers_version
|
| 51 |
+
)
|
| 52 |
+
from threading import Lock
|
| 53 |
+
|
| 54 |
+
import gradio as gr
|
| 55 |
+
import spaces
|
| 56 |
+
|
| 57 |
+
# Check for minimum required Transformers version for custom model support
|
| 58 |
+
MIN_TRANSFORMERS_VERSION = "4.42.0"
|
| 59 |
+
if tuple(map(int, transformers_version.split("."))) < tuple(map(int, MIN_TRANSFORMERS_VERSION.split("."))):
|
| 60 |
+
logging.warning(f"Transformers version {transformers_version} detected. Please upgrade to at least {MIN_TRANSFORMERS_VERSION} for proper support of the 'gemma2' architecture.")
|
| 61 |
+
|
| 62 |
+
# Configure logging
|
| 63 |
+
logging.basicConfig(
|
| 64 |
+
level=logging.INFO,
|
| 65 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 66 |
+
handlers=[
|
| 67 |
+
logging.FileHandler('pipeline.log'),
|
| 68 |
+
logging.StreamHandler()
|
| 69 |
+
]
|
| 70 |
+
)
|
| 71 |
+
logger = logging.getLogger(__name__)
|
| 72 |
+
|
| 73 |
+
def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10):
|
| 74 |
+
"""
|
| 75 |
+
Check memory usage; if usage is high or available memory is low,
|
| 76 |
+
force garbage collection and sleep briefly.
|
| 77 |
+
"""
|
| 78 |
+
vm = psutil.virtual_memory()
|
| 79 |
+
used_percent = vm.percent
|
| 80 |
+
available_mb = vm.available / (1024 * 1024)
|
| 81 |
+
logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available")
|
| 82 |
+
if used_percent > threshold_percent or available_mb < min_available_mb:
|
| 83 |
+
logger.warning("High memory usage detected, forcing garbage collection and sleeping...")
|
| 84 |
+
gc.collect()
|
| 85 |
+
time.sleep(sleep_duration)
|
| 86 |
+
|
| 87 |
+
@dataclass
|
| 88 |
+
class WordAnalysis:
|
| 89 |
+
"""Structured representation of word-level analysis"""
|
| 90 |
+
arabic: str
|
| 91 |
+
translation: str
|
| 92 |
+
position: str
|
| 93 |
+
morphology: Dict
|
| 94 |
+
features: List[str]
|
| 95 |
+
root: str
|
| 96 |
+
location: str
|
| 97 |
+
metadata: Dict
|
| 98 |
+
|
| 99 |
+
@dataclass
|
| 100 |
+
class VerseData:
|
| 101 |
+
"""Structured representation of verse-level data"""
|
| 102 |
+
chapter: int
|
| 103 |
+
verse: int
|
| 104 |
+
arabic_text: str
|
| 105 |
+
translation: str
|
| 106 |
+
words: List[WordAnalysis]
|
| 107 |
+
metadata: Dict
|
| 108 |
+
|
| 109 |
+
class QuranicDataset(Dataset):
|
| 110 |
+
"""Custom dataset for Quranic text training."""
|
| 111 |
+
def __init__(self, processed_data: List[Dict], tokenizer):
|
| 112 |
+
self.examples = []
|
| 113 |
+
self.tokenizer = tokenizer
|
| 114 |
+
for verse_data in processed_data:
|
| 115 |
+
self.examples.extend(self._create_training_examples(verse_data))
|
| 116 |
+
|
| 117 |
+
def _create_training_examples(self, verse_data: Dict) -> List[Dict]:
|
| 118 |
+
examples = []
|
| 119 |
+
text_block = (
|
| 120 |
+
f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n"
|
| 121 |
+
f"Arabic: {verse_data['arabic_text']}\n"
|
| 122 |
+
f"Translation: {verse_data['translation']}\n"
|
| 123 |
+
"Morphological Analysis:\n"
|
| 124 |
+
)
|
| 125 |
+
for word in verse_data['words']:
|
| 126 |
+
text_block += (
|
| 127 |
+
f"[WORD] {word['arabic']}\n"
|
| 128 |
+
f"Root: {word['root']}\n"
|
| 129 |
+
f"Features: {', '.join(word['features'])}\n"
|
| 130 |
+
)
|
| 131 |
+
examples.append(self._format_example(text_block))
|
| 132 |
+
return examples
|
| 133 |
+
|
| 134 |
+
def _format_example(self, text: str) -> Dict:
|
| 135 |
+
encodings = self.tokenizer(
|
| 136 |
+
text,
|
| 137 |
+
truncation=True,
|
| 138 |
+
max_length=64,
|
| 139 |
+
padding="max_length",
|
| 140 |
+
return_tensors="pt"
|
| 141 |
+
)
|
| 142 |
+
return {
|
| 143 |
+
"input_ids": encodings["input_ids"][0],
|
| 144 |
+
"attention_mask": encodings["attention_mask"][0]
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
def __len__(self):
|
| 148 |
+
return len(self.examples)
|
| 149 |
+
|
| 150 |
+
def __getitem__(self, idx):
|
| 151 |
+
return self.examples[idx]
|
| 152 |
+
|
| 153 |
+
class QuranicDataProcessor:
|
| 154 |
+
"""Processes Quranic data into structured training examples."""
|
| 155 |
+
def __init__(self, source_dir: str, output_dir: str):
|
| 156 |
+
self.source_dir = source_dir
|
| 157 |
+
self.output_dir = output_dir
|
| 158 |
+
self.morphological_data: Dict[str, Dict] = {}
|
| 159 |
+
self.word_by_word_data: Dict[str, List[str]] = {}
|
| 160 |
+
self.translation_data: Dict[str, str] = {}
|
| 161 |
+
self.processing_lock = Lock()
|
| 162 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 163 |
+
os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True)
|
| 164 |
+
os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True)
|
| 165 |
+
# Create the public checkpoints directory if not already there.
|
| 166 |
+
os.makedirs(os.path.join(output_dir, 'public', 'checkpoints'), exist_ok=True)
|
| 167 |
+
logger.info(f"Initialized processor with source dir: {source_dir}")
|
| 168 |
+
|
| 169 |
+
def load_source_files(self) -> bool:
|
| 170 |
+
"""Loads morphological, translation, and word-by-word data from project root."""
|
| 171 |
+
try:
|
| 172 |
+
logger.info("Loading morphological data...")
|
| 173 |
+
morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt')
|
| 174 |
+
with open(morph_path, 'r', encoding='utf-8') as f:
|
| 175 |
+
next(f)
|
| 176 |
+
for line in f:
|
| 177 |
+
if line.strip() and not line.startswith('#'):
|
| 178 |
+
parts = line.strip().split('\t')
|
| 179 |
+
if len(parts) >= 4:
|
| 180 |
+
location = parts[0].strip('()')
|
| 181 |
+
self.morphological_data[location] = {
|
| 182 |
+
'form': parts[1],
|
| 183 |
+
'tag': parts[2],
|
| 184 |
+
'features': parts[3]
|
| 185 |
+
}
|
| 186 |
+
logger.info(f"Loaded {len(self.morphological_data)} morphological entries")
|
| 187 |
+
logger.info("Loading translation data...")
|
| 188 |
+
trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt')
|
| 189 |
+
with open(trans_path, 'r', encoding='utf-8') as f:
|
| 190 |
+
next(f)
|
| 191 |
+
for line in f:
|
| 192 |
+
if line.strip():
|
| 193 |
+
parts = line.strip().split('|')
|
| 194 |
+
if len(parts) >= 3:
|
| 195 |
+
key = f"{parts[0]}:{parts[1]}"
|
| 196 |
+
self.translation_data[key] = parts[2].strip()
|
| 197 |
+
logger.info(f"Loaded {len(self.translation_data)} verse translations")
|
| 198 |
+
logger.info("Loading word-by-word data...")
|
| 199 |
+
word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt')
|
| 200 |
+
with open(word_path, 'r', encoding='utf-8-sig') as f:
|
| 201 |
+
lines = [line.strip() for line in f if line.strip()]
|
| 202 |
+
sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1])))
|
| 203 |
+
if len(lines) != len(sorted_keys):
|
| 204 |
+
logger.warning("Mismatch between word-by-word file and translation data")
|
| 205 |
+
for i, verse_key in enumerate(sorted_keys):
|
| 206 |
+
if i < len(lines):
|
| 207 |
+
words = [w.strip() for w in lines[i].split('|') if w.strip()]
|
| 208 |
+
self.word_by_word_data[verse_key] = words
|
| 209 |
+
logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses")
|
| 210 |
+
return True
|
| 211 |
+
except Exception as e:
|
| 212 |
+
logger.error(f"Error loading source files: {str(e)}")
|
| 213 |
+
logger.error(traceback.format_exc())
|
| 214 |
+
return False
|
| 215 |
+
|
| 216 |
+
def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]:
|
| 217 |
+
"""Processes a single verse into structured format."""
|
| 218 |
+
try:
|
| 219 |
+
verse_ref = f"{chapter}:{verse}"
|
| 220 |
+
logger.info(f"Processing verse {verse_ref}")
|
| 221 |
+
translation = self.translation_data.get(verse_ref)
|
| 222 |
+
if not translation:
|
| 223 |
+
logger.warning(f"No translation for verse {verse_ref}")
|
| 224 |
+
return None
|
| 225 |
+
verse_word_list = self.word_by_word_data.get(verse_ref, [])
|
| 226 |
+
if not verse_word_list:
|
| 227 |
+
logger.warning(f"No word-by-word data for verse {verse_ref}")
|
| 228 |
+
return None
|
| 229 |
+
verse_words: List[WordAnalysis] = []
|
| 230 |
+
arabic_text = ""
|
| 231 |
+
for pos in range(1, len(verse_word_list) + 1):
|
| 232 |
+
pattern = f"{chapter}:{verse}:{pos}:"
|
| 233 |
+
matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)]
|
| 234 |
+
if not matching_entries:
|
| 235 |
+
logger.debug(f"No morphological data for {pattern}")
|
| 236 |
+
continue
|
| 237 |
+
combined_form = " ".join(entry['form'] for entry in matching_entries)
|
| 238 |
+
combined_features = []
|
| 239 |
+
root = ""
|
| 240 |
+
for entry in matching_entries:
|
| 241 |
+
features = entry['features'].split('|')
|
| 242 |
+
combined_features.extend(features)
|
| 243 |
+
if not root:
|
| 244 |
+
for f in features:
|
| 245 |
+
if 'ROOT:' in f:
|
| 246 |
+
root = f.split('ROOT:')[1]
|
| 247 |
+
break
|
| 248 |
+
word_translation = verse_word_list[pos - 1]
|
| 249 |
+
word = WordAnalysis(
|
| 250 |
+
arabic=combined_form,
|
| 251 |
+
translation=word_translation,
|
| 252 |
+
position=str(pos),
|
| 253 |
+
morphology=matching_entries[0],
|
| 254 |
+
features=combined_features,
|
| 255 |
+
root=root,
|
| 256 |
+
location=f"{chapter}:{verse}:{pos}",
|
| 257 |
+
metadata={}
|
| 258 |
+
)
|
| 259 |
+
verse_words.append(word)
|
| 260 |
+
arabic_text += f" {combined_form}"
|
| 261 |
+
verse_data = VerseData(
|
| 262 |
+
chapter=chapter,
|
| 263 |
+
verse=verse,
|
| 264 |
+
arabic_text=arabic_text.strip(),
|
| 265 |
+
translation=translation,
|
| 266 |
+
words=verse_words,
|
| 267 |
+
metadata={
|
| 268 |
+
"processed_timestamp": datetime.now().isoformat(),
|
| 269 |
+
"word_count": len(verse_words)
|
| 270 |
+
}
|
| 271 |
+
)
|
| 272 |
+
self._save_verse_data(verse_data)
|
| 273 |
+
return verse_data
|
| 274 |
+
except Exception as e:
|
| 275 |
+
logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}")
|
| 276 |
+
logger.error(traceback.format_exc())
|
| 277 |
+
return None
|
| 278 |
+
|
| 279 |
+
def _save_verse_data(self, verse_data: VerseData):
|
| 280 |
+
"""Saves processed verse data as JSON and TXT."""
|
| 281 |
+
try:
|
| 282 |
+
verse_ref = f"{verse_data.chapter}:{verse_data.verse}"
|
| 283 |
+
json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json')
|
| 284 |
+
with open(json_path, 'w', encoding='utf-8') as f:
|
| 285 |
+
json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2)
|
| 286 |
+
txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt')
|
| 287 |
+
with open(txt_path, 'w', encoding='utf-8') as f:
|
| 288 |
+
f.write(f"=== Verse {verse_ref} ===\n\n")
|
| 289 |
+
f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n")
|
| 290 |
+
f.write(f"Translation:\n{verse_data.translation}\n\n")
|
| 291 |
+
f.write("Word Analysis:\n")
|
| 292 |
+
for i, word in enumerate(verse_data.words, 1):
|
| 293 |
+
f.write(f"\nWord {i}:\n")
|
| 294 |
+
f.write(f" Arabic: {word.arabic}\n")
|
| 295 |
+
f.write(f" Translation: {word.translation}\n")
|
| 296 |
+
f.write(f" Root: {word.root}\n")
|
| 297 |
+
f.write(" Features:\n")
|
| 298 |
+
for feature in word.features:
|
| 299 |
+
f.write(f" - {feature}\n")
|
| 300 |
+
f.write("\n")
|
| 301 |
+
logger.info(f"Saved verse data to {json_path} and {txt_path}")
|
| 302 |
+
except Exception as e:
|
| 303 |
+
logger.error(f"Error saving verse data: {str(e)}")
|
| 304 |
+
logger.error(traceback.format_exc())
|
| 305 |
+
|
| 306 |
+
class QuranicModelTrainer:
|
| 307 |
+
"""Trains the Gemma-2-2b model on Quranic data using chunked incremental updates."""
|
| 308 |
+
def __init__(self,
|
| 309 |
+
model_name: str = "google/gemma-2-2b",
|
| 310 |
+
processed_data_dir: str = "processed_data",
|
| 311 |
+
checkpoint_dir: str = "checkpoints"):
|
| 312 |
+
self.processed_data_dir = processed_data_dir
|
| 313 |
+
# Here, we assume that the public checkpoints will be stored in the public folder.
|
| 314 |
+
self.checkpoint_dir = os.path.join("public", checkpoint_dir)
|
| 315 |
+
self.device = "cpu" # Training on CPU; ZeroGPU will handle GPU access.
|
| 316 |
+
logger.info("Loading tokenizer and model...")
|
| 317 |
+
|
| 318 |
+
# Load tokenizer with additional special tokens and HF token from environment
|
| 319 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 320 |
+
model_name,
|
| 321 |
+
token=os.environ.get("HF_TOKEN"),
|
| 322 |
+
additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"],
|
| 323 |
+
trust_remote_code=True
|
| 324 |
+
)
|
| 325 |
+
if self.tokenizer.pad_token is None:
|
| 326 |
+
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 327 |
+
|
| 328 |
+
# Load model using eager attention for Gemma2 and low_cpu_mem_usage.
|
| 329 |
+
try:
|
| 330 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 331 |
+
model_name,
|
| 332 |
+
token=os.environ.get("HF_TOKEN"),
|
| 333 |
+
torch_dtype=torch.float32,
|
| 334 |
+
low_cpu_mem_usage=True,
|
| 335 |
+
trust_remote_code=True,
|
| 336 |
+
attn_implementation="eager"
|
| 337 |
+
)
|
| 338 |
+
except Exception as e:
|
| 339 |
+
logger.error(f"Error loading model directly: {str(e)}")
|
| 340 |
+
logger.info("Attempting to load with fallback parameters...")
|
| 341 |
+
from transformers import AutoConfig
|
| 342 |
+
config = AutoConfig.from_pretrained(
|
| 343 |
+
model_name,
|
| 344 |
+
token=os.environ.get("HF_TOKEN"),
|
| 345 |
+
trust_remote_code=True
|
| 346 |
+
)
|
| 347 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 348 |
+
model_name,
|
| 349 |
+
token=os.environ.get("HF_TOKEN"),
|
| 350 |
+
config=config,
|
| 351 |
+
torch_dtype=torch.float32,
|
| 352 |
+
low_cpu_mem_usage=True,
|
| 353 |
+
trust_remote_code=True,
|
| 354 |
+
revision="main",
|
| 355 |
+
attn_implementation="eager"
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Resize token embeddings to match tokenizer vocabulary size
|
| 359 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
| 360 |
+
self.model.train()
|
| 361 |
+
self.model.config.use_cache = False
|
| 362 |
+
|
| 363 |
+
if hasattr(self.model, "gradient_checkpointing_enable"):
|
| 364 |
+
self.model.gradient_checkpointing_enable()
|
| 365 |
+
else:
|
| 366 |
+
logger.warning("Gradient checkpointing not available for this model")
|
| 367 |
+
|
| 368 |
+
def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset:
|
| 369 |
+
"""Creates a QuranicDataset from processed chapter data."""
|
| 370 |
+
return QuranicDataset(chapter_data, self.tokenizer)
|
| 371 |
+
|
| 372 |
+
def train_chapter(self,
|
| 373 |
+
chapter_num: int,
|
| 374 |
+
processed_verses: List[Dict],
|
| 375 |
+
chunk_size: int = 5, # Reduced chunk size to help with memory
|
| 376 |
+
num_train_epochs: int = 5, # Lower epochs for testing
|
| 377 |
+
per_device_train_batch_size: int = 1,
|
| 378 |
+
learning_rate: float = 3e-5,
|
| 379 |
+
weight_decay: float = 0.01,
|
| 380 |
+
gradient_accumulation_steps: int = 32) -> List[str]:
|
| 381 |
+
"""
|
| 382 |
+
Splits chapter data into chunks and trains incrementally to reduce memory usage.
|
| 383 |
+
After each training chunk, the checkpoint is saved and a downloadable link is generated.
|
| 384 |
+
Returns a list of checkpoint links for the chapter.
|
| 385 |
+
"""
|
| 386 |
+
checkpoint_links = []
|
| 387 |
+
try:
|
| 388 |
+
total_examples = len(processed_verses)
|
| 389 |
+
total_chunks = math.ceil(total_examples / chunk_size)
|
| 390 |
+
logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.")
|
| 391 |
+
for chunk_index in range(total_chunks):
|
| 392 |
+
chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size]
|
| 393 |
+
dataset = self.prepare_training_data(chunk_data)
|
| 394 |
+
# Save checkpoints in the public folder for serving
|
| 395 |
+
chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}")
|
| 396 |
+
os.makedirs(chunk_output_dir, exist_ok=True)
|
| 397 |
+
training_args = TrainingArguments(
|
| 398 |
+
output_dir=chunk_output_dir,
|
| 399 |
+
overwrite_output_dir=True,
|
| 400 |
+
num_train_epochs=num_train_epochs,
|
| 401 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
| 402 |
+
learning_rate=learning_rate,
|
| 403 |
+
weight_decay=weight_decay,
|
| 404 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 405 |
+
fp16=False,
|
| 406 |
+
remove_unused_columns=False,
|
| 407 |
+
logging_steps=50,
|
| 408 |
+
report_to="none",
|
| 409 |
+
evaluation_strategy="no",
|
| 410 |
+
use_cpu=True, # Use CPU flag instead of no_cuda (deprecated)
|
| 411 |
+
dataloader_num_workers=0,
|
| 412 |
+
dataloader_pin_memory=False
|
| 413 |
+
)
|
| 414 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 415 |
+
tokenizer=self.tokenizer,
|
| 416 |
+
mlm=False
|
| 417 |
+
)
|
| 418 |
+
trainer = Trainer(
|
| 419 |
+
model=self.model,
|
| 420 |
+
args=training_args,
|
| 421 |
+
train_dataset=dataset,
|
| 422 |
+
tokenizer=self.tokenizer,
|
| 423 |
+
data_collator=data_collator
|
| 424 |
+
)
|
| 425 |
+
logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num}...")
|
| 426 |
+
trainer.train()
|
| 427 |
+
trainer.save_model(chunk_output_dir)
|
| 428 |
+
# Generate a downloadable link for the checkpoint.
|
| 429 |
+
# The BASE_DOWNLOAD_URL should be set to your Space's URL.
|
| 430 |
+
base_download_url = os.environ.get("BASE_DOWNLOAD_URL", "https://huggingface.co/spaces/eBlessings/Finetune")
|
| 431 |
+
# Construct a URL that maps to the public checkpoint folder.
|
| 432 |
+
relative_path = os.path.join("working_directory", self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}").replace(os.sep, '/')
|
| 433 |
+
link = f"{base_download_url}/tree/main/{relative_path}"
|
| 434 |
+
logger.info(f"Checkpoint saved. Download link: {link}")
|
| 435 |
+
checkpoint_links.append(link)
|
| 436 |
+
del trainer, dataset
|
| 437 |
+
gc.collect()
|
| 438 |
+
manage_memory()
|
| 439 |
+
logger.info(f"Completed training for Chapter {chapter_num}")
|
| 440 |
+
return checkpoint_links
|
| 441 |
+
except Exception as e:
|
| 442 |
+
logger.error(f"Error training chapter {chapter_num}: {str(e)}")
|
| 443 |
+
logger.error(traceback.format_exc())
|
| 444 |
+
return checkpoint_links
|
| 445 |
+
|
| 446 |
+
class QuranicPipeline:
|
| 447 |
+
"""Integrates data processing and incremental model training for all chapters."""
|
| 448 |
+
def __init__(self,
|
| 449 |
+
source_dir: str = ".",
|
| 450 |
+
working_dir: str = "working_directory",
|
| 451 |
+
start_chapter: int = 1,
|
| 452 |
+
end_chapter: int = 114):
|
| 453 |
+
self.source_dir = source_dir
|
| 454 |
+
self.working_dir = working_dir
|
| 455 |
+
self.start_chapter = start_chapter
|
| 456 |
+
self.end_chapter = end_chapter
|
| 457 |
+
self.setup_directories()
|
| 458 |
+
global logger
|
| 459 |
+
logger = logging.getLogger(__name__)
|
| 460 |
+
self.state = {
|
| 461 |
+
"last_processed_chapter": 0,
|
| 462 |
+
"last_trained_chapter": 0,
|
| 463 |
+
"current_state": "initialized",
|
| 464 |
+
"errors": [],
|
| 465 |
+
"start_time": datetime.now().isoformat()
|
| 466 |
+
}
|
| 467 |
+
self.load_state()
|
| 468 |
+
try:
|
| 469 |
+
logger.info("Initializing Quranic Data Processor...")
|
| 470 |
+
self.processor = QuranicDataProcessor(
|
| 471 |
+
source_dir=self.source_dir,
|
| 472 |
+
output_dir=os.path.join(self.working_dir, "processed_data")
|
| 473 |
+
)
|
| 474 |
+
logger.info("Initializing Quranic Model Trainer...")
|
| 475 |
+
self.trainer = QuranicModelTrainer(
|
| 476 |
+
model_name="google/gemma-2-2b",
|
| 477 |
+
processed_data_dir=os.path.join(self.working_dir, "processed_data"),
|
| 478 |
+
checkpoint_dir="checkpoints" # This will be stored under public folder
|
| 479 |
+
)
|
| 480 |
+
self.state["current_state"] = "ready"
|
| 481 |
+
self.save_state()
|
| 482 |
+
except Exception as e:
|
| 483 |
+
self.handle_error("Initialization failed", e)
|
| 484 |
+
raise
|
| 485 |
+
|
| 486 |
+
def setup_directories(self):
|
| 487 |
+
dirs = [
|
| 488 |
+
self.working_dir,
|
| 489 |
+
os.path.join(self.working_dir, "processed_data"),
|
| 490 |
+
os.path.join(self.working_dir, "checkpoints"),
|
| 491 |
+
os.path.join(self.working_dir, "logs"),
|
| 492 |
+
os.path.join(self.working_dir, "state"),
|
| 493 |
+
os.path.join(self.working_dir, "public") # Directory for public assets
|
| 494 |
+
]
|
| 495 |
+
for d in dirs:
|
| 496 |
+
os.makedirs(d, exist_ok=True)
|
| 497 |
+
|
| 498 |
+
def load_state(self):
|
| 499 |
+
state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
|
| 500 |
+
if os.path.exists(state_file):
|
| 501 |
+
try:
|
| 502 |
+
with open(state_file, 'r') as f:
|
| 503 |
+
saved_state = json.load(f)
|
| 504 |
+
self.state.update(saved_state)
|
| 505 |
+
logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, "
|
| 506 |
+
f"last trained chapter {self.state.get('last_trained_chapter')}")
|
| 507 |
+
except Exception as e:
|
| 508 |
+
logger.warning(f"Could not load previous state: {str(e)}")
|
| 509 |
+
|
| 510 |
+
def save_state(self):
|
| 511 |
+
state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
|
| 512 |
+
with open(state_file, 'w') as f:
|
| 513 |
+
json.dump(self.state, f, indent=2)
|
| 514 |
+
|
| 515 |
+
def handle_error(self, context: str, error: Exception):
|
| 516 |
+
error_detail = {
|
| 517 |
+
"timestamp": datetime.now().isoformat(),
|
| 518 |
+
"context": context,
|
| 519 |
+
"error": str(error),
|
| 520 |
+
"traceback": traceback.format_exc()
|
| 521 |
+
}
|
| 522 |
+
self.state.setdefault("errors", []).append(error_detail)
|
| 523 |
+
logger.error(f"{context}: {str(error)}")
|
| 524 |
+
self.save_state()
|
| 525 |
+
|
| 526 |
+
def run_pipeline(self) -> List[str]:
|
| 527 |
+
"""Runs processing and training for chapters sequentially, then saves the final model.
|
| 528 |
+
Returns a list of downloadable checkpoint links."""
|
| 529 |
+
logger.info("Starting pipeline execution")
|
| 530 |
+
all_checkpoint_links = []
|
| 531 |
+
try:
|
| 532 |
+
if not self.processor.load_source_files():
|
| 533 |
+
raise Exception("Failed to load source files")
|
| 534 |
+
for chapter in range(self.start_chapter, self.end_chapter + 1):
|
| 535 |
+
logger.info(f"=== Processing Chapter {chapter} ===")
|
| 536 |
+
processed_chapter_data = []
|
| 537 |
+
verse = 1
|
| 538 |
+
while True:
|
| 539 |
+
verse_data = self.processor.process_verse(chapter, verse)
|
| 540 |
+
if verse_data is None:
|
| 541 |
+
break
|
| 542 |
+
processed_chapter_data.append(asdict(verse_data))
|
| 543 |
+
verse += 1
|
| 544 |
+
if processed_chapter_data:
|
| 545 |
+
chapter_links = self.trainer.train_chapter(chapter, processed_chapter_data)
|
| 546 |
+
if not chapter_links:
|
| 547 |
+
logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.")
|
| 548 |
+
break
|
| 549 |
+
self.state["last_trained_chapter"] = chapter
|
| 550 |
+
all_checkpoint_links.extend(chapter_links)
|
| 551 |
+
self.save_state()
|
| 552 |
+
else:
|
| 553 |
+
logger.warning(f"No processed data for Chapter {chapter}")
|
| 554 |
+
self.state["last_processed_chapter"] = chapter
|
| 555 |
+
self.save_state()
|
| 556 |
+
manage_memory()
|
| 557 |
+
logger.info("Pipeline execution completed")
|
| 558 |
+
# Save the final model and tokenizer after all training is complete.
|
| 559 |
+
final_model_dir = os.path.join(self.working_dir, "final_model")
|
| 560 |
+
os.makedirs(final_model_dir, exist_ok=True)
|
| 561 |
+
self.trainer.model.save_pretrained(final_model_dir)
|
| 562 |
+
self.trainer.tokenizer.save_pretrained(final_model_dir)
|
| 563 |
+
logger.info(f"Final model saved to {final_model_dir}")
|
| 564 |
+
return all_checkpoint_links
|
| 565 |
+
except Exception as e:
|
| 566 |
+
self.handle_error("Pipeline execution failed", e)
|
| 567 |
+
raise
|
| 568 |
+
|
| 569 |
+
@spaces.GPU() # Request ZeroGPU hardware for the Space
|
| 570 |
+
def start_pipeline():
|
| 571 |
+
try:
|
| 572 |
+
logger.info("Starting Quranic Training Pipeline with Gemma-2-2b")
|
| 573 |
+
logger.info(f"PyTorch version: {torch.__version__}")
|
| 574 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 575 |
+
if torch.cuda.is_available():
|
| 576 |
+
logger.info(f"CUDA device count: {torch.cuda.device_count()}")
|
| 577 |
+
logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}")
|
| 578 |
+
|
| 579 |
+
if not os.environ.get("HF_TOKEN"):
|
| 580 |
+
logger.warning("HF_TOKEN environment variable not set. Model loading may fail.")
|
| 581 |
+
|
| 582 |
+
required_files = [
|
| 583 |
+
'quranic-corpus-morphology-0.4.txt',
|
| 584 |
+
'en.sample.quran-maududi.txt',
|
| 585 |
+
'en.w4w.qurandev.txt'
|
| 586 |
+
]
|
| 587 |
+
missing_files = [f for f in required_files if not os.path.exists(f)]
|
| 588 |
+
if missing_files:
|
| 589 |
+
return f"Missing required data files: {', '.join(missing_files)}"
|
| 590 |
+
|
| 591 |
+
pipeline = QuranicPipeline(
|
| 592 |
+
source_dir=".",
|
| 593 |
+
working_dir="working_directory",
|
| 594 |
+
start_chapter=1,
|
| 595 |
+
end_chapter=114
|
| 596 |
+
)
|
| 597 |
+
checkpoint_links = pipeline.run_pipeline()
|
| 598 |
+
result_message = "Pipeline execution completed successfully.\n\nDownload Checkpoints:\n" + "\n".join(checkpoint_links)
|
| 599 |
+
return result_message
|
| 600 |
+
except Exception as e:
|
| 601 |
+
error_msg = f"Pipeline execution failed: {str(e)}\n{traceback.format_exc()}"
|
| 602 |
+
logger.error(error_msg)
|
| 603 |
+
return error_msg
|
| 604 |
+
|
| 605 |
+
iface = gr.Interface(
|
| 606 |
+
fn=start_pipeline,
|
| 607 |
+
inputs=[],
|
| 608 |
+
outputs=gr.Textbox(label="Pipeline Status", lines=15),
|
| 609 |
+
title="Quranic Training Pipeline for Gemma-2-2b",
|
| 610 |
+
description="""This pipeline fine-tunes Google's Gemma-2-2b model on Quranic data.
|
| 611 |
+
|
| 612 |
+
Click 'Submit' to trigger the Quranic data processing and training pipeline on ZeroGPU.
|
| 613 |
+
|
| 614 |
+
Requirements:
|
| 615 |
+
- Transformers (>=4.42.0)
|
| 616 |
+
- Gradio (>=5.12.0)
|
| 617 |
+
- PyTorch (==2.2.2)
|
| 618 |
+
- psutil (==5.9.5)
|
| 619 |
+
- Accelerate (>=0.26.0)
|
| 620 |
+
|
| 621 |
+
The pipeline processes all 114 chapters of the Quran sequentially, with memory management optimizations for ZeroGPU environments.
|
| 622 |
+
Download links for each checkpoint will be provided upon completion of each training chunk."""
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
if __name__ == "__main__":
|
| 626 |
+
iface.launch()
|