eBlessings commited on
Commit
2b7b704
·
verified ·
1 Parent(s): 706f893

Upload app5.py

Browse files
Files changed (1) hide show
  1. app5.py +535 -0
app5.py ADDED
@@ -0,0 +1,535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ app.py – Quranic Data Training Pipeline Endpoint for ZeroGPU Spaces
4
+ --------------------------------------------------------------------
5
+ This script integrates a full Quranic data processing and training pipeline
6
+ into a Gradio interface endpoint. It is optimized for CPU-based training on
7
+ Hugging Face ZeroGPU (using the Gradio SDK) and uses chunked incremental
8
+ training, memory management, and gradient checkpointing to efficiently update
9
+ Google’s Gemma-2B model with Quranic data.
10
+
11
+ Requirements:
12
+ - Hugging Face Transformers, Gradio, PyTorch, psutil
13
+ - Hugging Face PRO account with ZeroGPU enabled (make sure to add your HF token
14
+ as a secret named HF_TOKEN in your Space settings)
15
+ - Ubuntu CPU/Linux with access to ZeroGPU hardware via Spaces
16
+ - Input data files (quranic-corpus-morphology-0.4.txt, en.sample.quran-maududi.txt,
17
+ en.w4w.qurandev.txt) placed in the project root.
18
+ - Sufficient storage in "working_directory"
19
+
20
+ Author: [M-Saddam Hussain]
21
+ Date: February 2025
22
+ Data References: [Tanzil.net, IslamSource, QuranicCorpus]
23
+ """
24
+
25
+ import json
26
+ import logging
27
+ import os
28
+ import sys
29
+ import traceback
30
+ import gc
31
+ import time
32
+ import psutil
33
+ import math
34
+ from datetime import datetime
35
+ from typing import Dict, List, Optional
36
+ from dataclasses import dataclass, asdict
37
+
38
+ import torch
39
+ # Limit PyTorch threads for CPU stability.
40
+ torch.set_num_threads(8)
41
+
42
+ from torch.utils.data import Dataset
43
+ from transformers import (
44
+ AutoTokenizer,
45
+ AutoModelForCausalLM,
46
+ TrainingArguments,
47
+ Trainer,
48
+ DataCollatorForLanguageModeling
49
+ )
50
+ from threading import Lock
51
+
52
+ # Import Gradio and spaces module for ZeroGPU.
53
+ import gradio as gr
54
+ import spaces
55
+
56
+ # Configure logging
57
+ logging.basicConfig(
58
+ level=logging.INFO,
59
+ format='%(asctime)s - %(levelname)s - %(message)s',
60
+ handlers=[
61
+ logging.FileHandler('pipeline.log'),
62
+ logging.StreamHandler()
63
+ ]
64
+ )
65
+ logger = logging.getLogger(__name__)
66
+
67
+ def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10):
68
+ """
69
+ Check memory usage; if usage is high or available memory is low,
70
+ force garbage collection and sleep briefly.
71
+ """
72
+ vm = psutil.virtual_memory()
73
+ used_percent = vm.percent
74
+ available_mb = vm.available / (1024 * 1024)
75
+ logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available")
76
+ if used_percent > threshold_percent or available_mb < min_available_mb:
77
+ logger.warning("High memory usage detected, forcing garbage collection and sleeping...")
78
+ gc.collect()
79
+ time.sleep(sleep_duration)
80
+
81
+ @dataclass
82
+ class WordAnalysis:
83
+ """Structured representation of word-level analysis"""
84
+ arabic: str
85
+ translation: str
86
+ position: str
87
+ morphology: Dict
88
+ features: List[str]
89
+ root: str
90
+ location: str
91
+ metadata: Dict
92
+
93
+ @dataclass
94
+ class VerseData:
95
+ """Structured representation of verse-level data"""
96
+ chapter: int
97
+ verse: int
98
+ arabic_text: str
99
+ translation: str
100
+ words: List[WordAnalysis]
101
+ metadata: Dict
102
+
103
+ class QuranicDataset(Dataset):
104
+ """Custom dataset for Quranic text training."""
105
+ def __init__(self, processed_data: List[Dict], tokenizer):
106
+ self.examples = []
107
+ self.tokenizer = tokenizer
108
+ for verse_data in processed_data:
109
+ self.examples.extend(self._create_training_examples(verse_data))
110
+
111
+ def _create_training_examples(self, verse_data: Dict) -> List[Dict]:
112
+ examples = []
113
+ text_block = (
114
+ f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n"
115
+ f"Arabic: {verse_data['arabic_text']}\n"
116
+ f"Translation: {verse_data['translation']}\n"
117
+ "Morphological Analysis:\n"
118
+ )
119
+ for word in verse_data['words']:
120
+ text_block += (
121
+ f"[WORD] {word['arabic']}\n"
122
+ f"Root: {word['root']}\n"
123
+ f"Features: {', '.join(word['features'])}\n"
124
+ )
125
+ examples.append(self._format_example(text_block))
126
+ return examples
127
+
128
+ def _format_example(self, text: str) -> Dict:
129
+ encodings = self.tokenizer(
130
+ text,
131
+ truncation=True,
132
+ max_length=64, # Reduced length to lower memory usage.
133
+ padding="max_length",
134
+ return_tensors="pt"
135
+ )
136
+ return {
137
+ "input_ids": encodings["input_ids"][0],
138
+ "attention_mask": encodings["attention_mask"][0]
139
+ }
140
+
141
+ def __len__(self):
142
+ return len(self.examples)
143
+
144
+ def __getitem__(self, idx):
145
+ return self.examples[idx]
146
+
147
+ class QuranicDataProcessor:
148
+ """Processes Quranic data into structured training examples."""
149
+ def __init__(self, source_dir: str, output_dir: str):
150
+ # Here, source_dir is set to project root.
151
+ self.source_dir = source_dir
152
+ self.output_dir = output_dir
153
+ self.morphological_data: Dict[str, Dict] = {}
154
+ self.word_by_word_data: Dict[str, List[str]] = {}
155
+ self.translation_data: Dict[str, str] = {}
156
+ self.processed_verses = set()
157
+ self.processing_lock = Lock()
158
+ os.makedirs(output_dir, exist_ok=True)
159
+ os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True)
160
+ os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True)
161
+ os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True)
162
+ logger.info(f"Initialized processor with source dir: {source_dir}")
163
+
164
+ def load_source_files(self) -> bool:
165
+ """Loads morphological, translation, and word-by-word data from project root."""
166
+ try:
167
+ logger.info("Loading morphological data...")
168
+ morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt')
169
+ with open(morph_path, 'r', encoding='utf-8') as f:
170
+ next(f)
171
+ for line in f:
172
+ if line.strip() and not line.startswith('#'):
173
+ parts = line.strip().split('\t')
174
+ if len(parts) >= 4:
175
+ location = parts[0].strip('()')
176
+ self.morphological_data[location] = {
177
+ 'form': parts[1],
178
+ 'tag': parts[2],
179
+ 'features': parts[3]
180
+ }
181
+ logger.info(f"Loaded {len(self.morphological_data)} morphological entries")
182
+ logger.info("Loading translation data...")
183
+ trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt')
184
+ with open(trans_path, 'r', encoding='utf-8') as f:
185
+ next(f)
186
+ for line in f:
187
+ if line.strip():
188
+ parts = line.strip().split('|')
189
+ if len(parts) >= 3:
190
+ key = f"{parts[0]}:{parts[1]}"
191
+ self.translation_data[key] = parts[2].strip()
192
+ logger.info(f"Loaded {len(self.translation_data)} verse translations")
193
+ logger.info("Loading word-by-word data...")
194
+ word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt')
195
+ with open(word_path, 'r', encoding='utf-8-sig') as f:
196
+ lines = [line.strip() for line in f if line.strip()]
197
+ sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1])))
198
+ if len(lines) != len(sorted_keys):
199
+ logger.warning("Mismatch between word-by-word file and translation data")
200
+ for i, verse_key in enumerate(sorted_keys):
201
+ if i < len(lines):
202
+ words = [w.strip() for w in lines[i].split('|') if w.strip()]
203
+ self.word_by_word_data[verse_key] = words
204
+ logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses")
205
+ return True
206
+ except Exception as e:
207
+ logger.error(f"Error loading source files: {str(e)}")
208
+ logger.error(traceback.format_exc())
209
+ return False
210
+
211
+ def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]:
212
+ """Processes a single verse into structured format."""
213
+ try:
214
+ verse_ref = f"{chapter}:{verse}"
215
+ logger.info(f"Processing verse {verse_ref}")
216
+ translation = self.translation_data.get(verse_ref)
217
+ if not translation:
218
+ logger.warning(f"No translation for verse {verse_ref}")
219
+ return None
220
+ verse_word_list = self.word_by_word_data.get(verse_ref, [])
221
+ if not verse_word_list:
222
+ logger.warning(f"No word-by-word data for verse {verse_ref}")
223
+ return None
224
+ verse_words: List[WordAnalysis] = []
225
+ arabic_text = ""
226
+ for pos in range(1, len(verse_word_list) + 1):
227
+ pattern = f"{chapter}:{verse}:{pos}:"
228
+ matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)]
229
+ if not matching_entries:
230
+ logger.debug(f"No morphological data for {pattern}")
231
+ continue
232
+ combined_form = " ".join(entry['form'] for entry in matching_entries)
233
+ combined_features = []
234
+ root = ""
235
+ for entry in matching_entries:
236
+ features = entry['features'].split('|')
237
+ combined_features.extend(features)
238
+ if not root:
239
+ for f in features:
240
+ if 'ROOT:' in f:
241
+ root = f.split('ROOT:')[1]
242
+ break
243
+ word_translation = verse_word_list[pos - 1]
244
+ word = WordAnalysis(
245
+ arabic=combined_form,
246
+ translation=word_translation,
247
+ position=str(pos),
248
+ morphology=matching_entries[0],
249
+ features=combined_features,
250
+ root=root,
251
+ location=f"{chapter}:{verse}:{pos}",
252
+ metadata={}
253
+ )
254
+ verse_words.append(word)
255
+ arabic_text += f" {combined_form}"
256
+ verse_data = VerseData(
257
+ chapter=chapter,
258
+ verse=verse,
259
+ arabic_text=arabic_text.strip(),
260
+ translation=translation,
261
+ words=verse_words,
262
+ metadata={
263
+ "processed_timestamp": datetime.now().isoformat(),
264
+ "word_count": len(verse_words)
265
+ }
266
+ )
267
+ self._save_verse_data(verse_data)
268
+ return verse_data
269
+ except Exception as e:
270
+ logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}")
271
+ logger.error(traceback.format_exc())
272
+ return None
273
+
274
+ def _save_verse_data(self, verse_data: VerseData):
275
+ """Saves processed verse data as JSON and TXT."""
276
+ try:
277
+ verse_ref = f"{verse_data.chapter}:{verse_data.verse}"
278
+ json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json')
279
+ with open(json_path, 'w', encoding='utf-8') as f:
280
+ json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2)
281
+ txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt')
282
+ with open(txt_path, 'w', encoding='utf-8') as f:
283
+ f.write(f"=== Verse {verse_ref} ===\n\n")
284
+ f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n")
285
+ f.write(f"Translation:\n{verse_data.translation}\n\n")
286
+ f.write("Word Analysis:\n")
287
+ for i, word in enumerate(verse_data.words, 1):
288
+ f.write(f"\nWord {i}:\n")
289
+ f.write(f" Arabic: {word.arabic}\n")
290
+ f.write(f" Translation: {word.translation}\n")
291
+ f.write(f" Root: {word.root}\n")
292
+ f.write(" Features:\n")
293
+ for feature in word.features:
294
+ f.write(f" - {feature}\n")
295
+ f.write("\n")
296
+ logger.info(f"Saved verse data to {json_path} and {txt_path}")
297
+ except Exception as e:
298
+ logger.error(f"Error saving verse data: {str(e)}")
299
+ logger.error(traceback.format_exc())
300
+
301
+ class QuranicModelTrainer:
302
+ """Trains the Gemma-2B model on Quranic data using chunked incremental updates."""
303
+ def __init__(self,
304
+ model_name: str = "google/gemma-2-2b",
305
+ processed_data_dir: str = "processed_data",
306
+ checkpoint_dir: str = "checkpoints"):
307
+ self.processed_data_dir = processed_data_dir
308
+ self.checkpoint_dir = checkpoint_dir
309
+ self.device = "cpu" # Training on CPU; ZeroGPU will handle GPU access.
310
+ logger.info("Loading tokenizer and model...")
311
+ self.tokenizer = AutoTokenizer.from_pretrained(
312
+ model_name,
313
+ use_auth_token=os.environ.get("HF_TOKEN"),
314
+ additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"],
315
+ trust_remote_code=True
316
+ )
317
+ self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
318
+ self.model = AutoModelForCausalLM.from_pretrained(
319
+ model_name,
320
+ use_auth_token=os.environ.get("HF_TOKEN"),
321
+ torch_dtype=torch.float32,
322
+ low_cpu_mem_usage=True,
323
+ trust_remote_code=True
324
+ )
325
+ self.model.resize_token_embeddings(len(self.tokenizer))
326
+ self.model.train()
327
+ # Disable caching and enable gradient checkpointing for memory savings.
328
+ self.model.config.use_cache = False
329
+ self.model.gradient_checkpointing_enable()
330
+
331
+ def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset:
332
+ """Creates a QuranicDataset from processed chapter data."""
333
+ return QuranicDataset(chapter_data, self.tokenizer)
334
+
335
+ def train_chapter(self,
336
+ chapter_num: int,
337
+ processed_verses: List[Dict],
338
+ chunk_size: int = 10,
339
+ num_train_epochs: int = 10,
340
+ per_device_train_batch_size: int = 1,
341
+ learning_rate: float = 3e-5,
342
+ weight_decay: float = 0.01,
343
+ gradient_accumulation_steps: int = 64) -> bool:
344
+ """
345
+ Splits chapter data into chunks and trains incrementally to reduce memory usage.
346
+ """
347
+ try:
348
+ total_examples = len(processed_verses)
349
+ total_chunks = math.ceil(total_examples / chunk_size)
350
+ logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.")
351
+ for chunk_index in range(total_chunks):
352
+ chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size]
353
+ dataset = self.prepare_training_data(chunk_data)
354
+ chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}")
355
+ os.makedirs(chunk_output_dir, exist_ok=True)
356
+ training_args = TrainingArguments(
357
+ output_dir=chunk_output_dir,
358
+ overwrite_output_dir=True,
359
+ num_train_epochs=num_train_epochs,
360
+ per_device_train_batch_size=per_device_train_batch_size,
361
+ learning_rate=learning_rate,
362
+ weight_decay=weight_decay,
363
+ gradient_accumulation_steps=gradient_accumulation_steps,
364
+ fp16=False,
365
+ remove_unused_columns=False,
366
+ logging_steps=50,
367
+ report_to="none",
368
+ evaluation_strategy="no",
369
+ no_cuda=True,
370
+ dataloader_num_workers=0,
371
+ dataloader_pin_memory=False
372
+ )
373
+ data_collator = DataCollatorForLanguageModeling(
374
+ tokenizer=self.tokenizer,
375
+ mlm=False
376
+ )
377
+ trainer = Trainer(
378
+ model=self.model,
379
+ args=training_args,
380
+ train_dataset=dataset,
381
+ tokenizer=self.tokenizer,
382
+ data_collator=data_collator
383
+ )
384
+ logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num}...")
385
+ trainer.train()
386
+ trainer.save_model(chunk_output_dir)
387
+ del trainer, dataset
388
+ gc.collect()
389
+ manage_memory()
390
+ logger.info(f"Completed training for Chapter {chapter_num}")
391
+ return True
392
+ except Exception as e:
393
+ logger.error(f"Error training chapter {chapter_num}: {str(e)}")
394
+ logger.error(traceback.format_exc())
395
+ return False
396
+
397
+ class QuranicPipeline:
398
+ """Integrates data processing and incremental model training for all chapters."""
399
+ def __init__(self,
400
+ source_dir: str = ".",
401
+ working_dir: str = "working_directory",
402
+ start_chapter: int = 1,
403
+ end_chapter: int = 114):
404
+ # Here source_dir is set to the project root.
405
+ self.source_dir = source_dir
406
+ self.working_dir = working_dir
407
+ self.start_chapter = start_chapter
408
+ self.end_chapter = end_chapter
409
+ self.setup_directories()
410
+ global logger
411
+ logger = logging.getLogger(__name__)
412
+ self.state = {
413
+ "last_processed_chapter": 0,
414
+ "last_trained_chapter": 0,
415
+ "current_state": "initialized",
416
+ "errors": [],
417
+ "start_time": datetime.now().isoformat()
418
+ }
419
+ self.load_state()
420
+ try:
421
+ logger.info("Initializing Quranic Data Processor...")
422
+ self.processor = QuranicDataProcessor(
423
+ source_dir=self.source_dir,
424
+ output_dir=os.path.join(self.working_dir, "processed_data")
425
+ )
426
+ logger.info("Initializing Quranic Model Trainer...")
427
+ self.trainer = QuranicModelTrainer(
428
+ model_name="google/gemma-2-2b",
429
+ processed_data_dir=os.path.join(self.working_dir, "processed_data"),
430
+ checkpoint_dir=os.path.join(self.working_dir, "checkpoints")
431
+ )
432
+ self.state["current_state"] = "ready"
433
+ self.save_state()
434
+ except Exception as e:
435
+ self.handle_error("Initialization failed", e)
436
+ raise
437
+
438
+ def setup_directories(self):
439
+ dirs = [
440
+ self.working_dir,
441
+ os.path.join(self.working_dir, "processed_data"),
442
+ os.path.join(self.working_dir, "checkpoints"),
443
+ os.path.join(self.working_dir, "logs"),
444
+ os.path.join(self.working_dir, "state")
445
+ ]
446
+ for d in dirs:
447
+ os.makedirs(d, exist_ok=True)
448
+
449
+ def load_state(self):
450
+ state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
451
+ if os.path.exists(state_file):
452
+ try:
453
+ with open(state_file, 'r') as f:
454
+ saved_state = json.load(f)
455
+ self.state.update(saved_state)
456
+ logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, "
457
+ f"last trained chapter {self.state.get('last_trained_chapter')}")
458
+ except Exception as e:
459
+ logger.warning(f"Could not load previous state: {str(e)}")
460
+
461
+ def save_state(self):
462
+ state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
463
+ with open(state_file, 'w') as f:
464
+ json.dump(self.state, f, indent=2)
465
+
466
+ def handle_error(self, context: str, error: Exception):
467
+ error_detail = {
468
+ "timestamp": datetime.now().isoformat(),
469
+ "context": context,
470
+ "error": str(error),
471
+ "traceback": traceback.format_exc()
472
+ }
473
+ self.state.setdefault("errors", []).append(error_detail)
474
+ logger.error(f"{context}: {str(error)}")
475
+ self.save_state()
476
+
477
+ def run_pipeline(self):
478
+ """Runs processing and training for chapters sequentially."""
479
+ logger.info("Starting pipeline execution")
480
+ try:
481
+ if not self.processor.load_source_files():
482
+ raise Exception("Failed to load source files")
483
+ for chapter in range(self.start_chapter, self.end_chapter + 1):
484
+ logger.info(f"=== Processing Chapter {chapter} ===")
485
+ processed_chapter_data = []
486
+ verse = 1
487
+ while True:
488
+ verse_data = self.processor.process_verse(chapter, verse)
489
+ if verse_data is None:
490
+ break
491
+ processed_chapter_data.append(asdict(verse_data))
492
+ verse += 1
493
+ if processed_chapter_data:
494
+ success = self.trainer.train_chapter(chapter, processed_chapter_data)
495
+ if not success:
496
+ logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.")
497
+ break
498
+ self.state["last_trained_chapter"] = chapter
499
+ self.save_state()
500
+ else:
501
+ logger.warning(f"No processed data for Chapter {chapter}")
502
+ self.state["last_processed_chapter"] = chapter
503
+ self.save_state()
504
+ manage_memory()
505
+ logger.info("Pipeline execution completed")
506
+ except Exception as e:
507
+ self.handle_error("Pipeline execution failed", e)
508
+ raise
509
+
510
+ # Define a Gradio endpoint function that triggers the training pipeline.
511
+ @spaces.GPU() # Request ZeroGPU hardware.
512
+ def start_pipeline():
513
+ try:
514
+ pipeline = QuranicPipeline(
515
+ source_dir=".", # Now using project root for input files.
516
+ working_dir="working_directory",
517
+ start_chapter=1,
518
+ end_chapter=114
519
+ )
520
+ pipeline.run_pipeline()
521
+ return "Pipeline execution completed successfully."
522
+ except Exception as e:
523
+ return f"Pipeline execution failed: {str(e)}"
524
+
525
+ # Create a Gradio Interface with no inputs and a text output.
526
+ iface = gr.Interface(
527
+ fn=start_pipeline,
528
+ inputs=[],
529
+ outputs="text",
530
+ title="Quranic Training Pipeline",
531
+ description="Click 'Submit' to trigger the Quranic data processing and training pipeline on ZeroGPU."
532
+ )
533
+
534
+ if __name__ == "__main__":
535
+ iface.launch()