eBlessings commited on
Commit
ade6810
·
verified ·
1 Parent(s): 67c812f

Upload app4.py

Browse files
Files changed (1) hide show
  1. app4.py +532 -0
app4.py ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ app.py – Quranic Data Training Pipeline Endpoint for ZeroGPU Spaces
4
+ --------------------------------------------------------------------
5
+ This script integrates a full Quranic data processing and training pipeline
6
+ into a Gradio interface endpoint. It is optimized for CPU-based training on
7
+ Hugging Face ZeroGPU (using the Gradio SDK) and uses chunked incremental
8
+ training, memory management, and gradient checkpointing to efficiently update
9
+ Google’s Gemma-2B model with Quranic data.
10
+
11
+ Requirements:
12
+ - Hugging Face Transformers, Gradio, PyTorch, psutil
13
+ - Hugging Face PRO account with ZeroGPU enabled (make sure to add your HF token
14
+ as a secret named HF_TOKEN in your Space settings)
15
+ - Ubuntu CPU/Linux with access to ZeroGPU hardware via Spaces
16
+ - Source data in "source_files" directory
17
+ - Sufficient storage in "working_directory"
18
+
19
+ Author: [M-Saddam Hussain]
20
+ Date: February 2025
21
+ Data References: [Tanzil.net, IslamSource, QuranicCorpus]
22
+ """
23
+
24
+ import json
25
+ import logging
26
+ import os
27
+ import sys
28
+ import traceback
29
+ import gc
30
+ import time
31
+ import psutil
32
+ import math
33
+ from datetime import datetime
34
+ from typing import Dict, List, Optional
35
+ from dataclasses import dataclass, asdict
36
+
37
+ import torch
38
+ # Limit PyTorch threads for CPU stability.
39
+ torch.set_num_threads(8)
40
+
41
+ from torch.utils.data import Dataset
42
+ from transformers import (
43
+ AutoTokenizer,
44
+ AutoModelForCausalLM,
45
+ TrainingArguments,
46
+ Trainer,
47
+ DataCollatorForLanguageModeling
48
+ )
49
+ from threading import Lock
50
+
51
+ # Import Gradio and spaces module for ZeroGPU.
52
+ import gradio as gr
53
+ import spaces
54
+
55
+ # Configure logging
56
+ logging.basicConfig(
57
+ level=logging.INFO,
58
+ format='%(asctime)s - %(levelname)s - %(message)s',
59
+ handlers=[
60
+ logging.FileHandler('pipeline.log'),
61
+ logging.StreamHandler()
62
+ ]
63
+ )
64
+ logger = logging.getLogger(__name__)
65
+
66
+ def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10):
67
+ """
68
+ Check memory usage; if usage is high or available memory is low,
69
+ force garbage collection and sleep briefly.
70
+ """
71
+ vm = psutil.virtual_memory()
72
+ used_percent = vm.percent
73
+ available_mb = vm.available / (1024 * 1024)
74
+ logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available")
75
+ if used_percent > threshold_percent or available_mb < min_available_mb:
76
+ logger.warning("High memory usage detected, forcing garbage collection and sleeping...")
77
+ gc.collect()
78
+ time.sleep(sleep_duration)
79
+
80
+ @dataclass
81
+ class WordAnalysis:
82
+ """Structured representation of word-level analysis"""
83
+ arabic: str
84
+ translation: str
85
+ position: str
86
+ morphology: Dict
87
+ features: List[str]
88
+ root: str
89
+ location: str
90
+ metadata: Dict
91
+
92
+ @dataclass
93
+ class VerseData:
94
+ """Structured representation of verse-level data"""
95
+ chapter: int
96
+ verse: int
97
+ arabic_text: str
98
+ translation: str
99
+ words: List[WordAnalysis]
100
+ metadata: Dict
101
+
102
+ class QuranicDataset(Dataset):
103
+ """Custom dataset for Quranic text training."""
104
+ def __init__(self, processed_data: List[Dict], tokenizer):
105
+ self.examples = []
106
+ self.tokenizer = tokenizer
107
+ for verse_data in processed_data:
108
+ self.examples.extend(self._create_training_examples(verse_data))
109
+
110
+ def _create_training_examples(self, verse_data: Dict) -> List[Dict]:
111
+ examples = []
112
+ text_block = (
113
+ f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n"
114
+ f"Arabic: {verse_data['arabic_text']}\n"
115
+ f"Translation: {verse_data['translation']}\n"
116
+ "Morphological Analysis:\n"
117
+ )
118
+ for word in verse_data['words']:
119
+ text_block += (
120
+ f"[WORD] {word['arabic']}\n"
121
+ f"Root: {word['root']}\n"
122
+ f"Features: {', '.join(word['features'])}\n"
123
+ )
124
+ examples.append(self._format_example(text_block))
125
+ return examples
126
+
127
+ def _format_example(self, text: str) -> Dict:
128
+ encodings = self.tokenizer(
129
+ text,
130
+ truncation=True,
131
+ max_length=64, # Reduced length to lower memory usage.
132
+ padding="max_length",
133
+ return_tensors="pt"
134
+ )
135
+ return {
136
+ "input_ids": encodings["input_ids"][0],
137
+ "attention_mask": encodings["attention_mask"][0]
138
+ }
139
+
140
+ def __len__(self):
141
+ return len(self.examples)
142
+
143
+ def __getitem__(self, idx):
144
+ return self.examples[idx]
145
+
146
+ class QuranicDataProcessor:
147
+ """Processes Quranic data into structured training examples."""
148
+ def __init__(self, source_dir: str, output_dir: str):
149
+ self.source_dir = source_dir
150
+ self.output_dir = output_dir
151
+ self.morphological_data: Dict[str, Dict] = {}
152
+ self.word_by_word_data: Dict[str, List[str]] = {}
153
+ self.translation_data: Dict[str, str] = {}
154
+ self.processed_verses = set()
155
+ self.processing_lock = Lock()
156
+ os.makedirs(output_dir, exist_ok=True)
157
+ os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True)
158
+ os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True)
159
+ os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True)
160
+ logger.info(f"Initialized processor with source dir: {source_dir}")
161
+
162
+ def load_source_files(self) -> bool:
163
+ """Loads morphological, translation, and word-by-word data."""
164
+ try:
165
+ logger.info("Loading morphological data...")
166
+ morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt')
167
+ with open(morph_path, 'r', encoding='utf-8') as f:
168
+ next(f)
169
+ for line in f:
170
+ if line.strip() and not line.startswith('#'):
171
+ parts = line.strip().split('\t')
172
+ if len(parts) >= 4:
173
+ location = parts[0].strip('()')
174
+ self.morphological_data[location] = {
175
+ 'form': parts[1],
176
+ 'tag': parts[2],
177
+ 'features': parts[3]
178
+ }
179
+ logger.info(f"Loaded {len(self.morphological_data)} morphological entries")
180
+ logger.info("Loading translation data...")
181
+ trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt')
182
+ with open(trans_path, 'r', encoding='utf-8') as f:
183
+ next(f)
184
+ for line in f:
185
+ if line.strip():
186
+ parts = line.strip().split('|')
187
+ if len(parts) >= 3:
188
+ key = f"{parts[0]}:{parts[1]}"
189
+ self.translation_data[key] = parts[2].strip()
190
+ logger.info(f"Loaded {len(self.translation_data)} verse translations")
191
+ logger.info("Loading word-by-word data...")
192
+ word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt')
193
+ with open(word_path, 'r', encoding='utf-8-sig') as f:
194
+ lines = [line.strip() for line in f if line.strip()]
195
+ sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1])))
196
+ if len(lines) != len(sorted_keys):
197
+ logger.warning("Mismatch between word-by-word file and translation data")
198
+ for i, verse_key in enumerate(sorted_keys):
199
+ if i < len(lines):
200
+ words = [w.strip() for w in lines[i].split('|') if w.strip()]
201
+ self.word_by_word_data[verse_key] = words
202
+ logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses")
203
+ return True
204
+ except Exception as e:
205
+ logger.error(f"Error loading source files: {str(e)}")
206
+ logger.error(traceback.format_exc())
207
+ return False
208
+
209
+ def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]:
210
+ """Processes a single verse into structured format."""
211
+ try:
212
+ verse_ref = f"{chapter}:{verse}"
213
+ logger.info(f"Processing verse {verse_ref}")
214
+ translation = self.translation_data.get(verse_ref)
215
+ if not translation:
216
+ logger.warning(f"No translation for verse {verse_ref}")
217
+ return None
218
+ verse_word_list = self.word_by_word_data.get(verse_ref, [])
219
+ if not verse_word_list:
220
+ logger.warning(f"No word-by-word data for verse {verse_ref}")
221
+ return None
222
+ verse_words: List[WordAnalysis] = []
223
+ arabic_text = ""
224
+ for pos in range(1, len(verse_word_list) + 1):
225
+ pattern = f"{chapter}:{verse}:{pos}:"
226
+ matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)]
227
+ if not matching_entries:
228
+ logger.debug(f"No morphological data for {pattern}")
229
+ continue
230
+ combined_form = " ".join(entry['form'] for entry in matching_entries)
231
+ combined_features = []
232
+ root = ""
233
+ for entry in matching_entries:
234
+ features = entry['features'].split('|')
235
+ combined_features.extend(features)
236
+ if not root:
237
+ for f in features:
238
+ if 'ROOT:' in f:
239
+ root = f.split('ROOT:')[1]
240
+ break
241
+ word_translation = verse_word_list[pos - 1]
242
+ word = WordAnalysis(
243
+ arabic=combined_form,
244
+ translation=word_translation,
245
+ position=str(pos),
246
+ morphology=matching_entries[0],
247
+ features=combined_features,
248
+ root=root,
249
+ location=f"{chapter}:{verse}:{pos}",
250
+ metadata={}
251
+ )
252
+ verse_words.append(word)
253
+ arabic_text += f" {combined_form}"
254
+ verse_data = VerseData(
255
+ chapter=chapter,
256
+ verse=verse,
257
+ arabic_text=arabic_text.strip(),
258
+ translation=translation,
259
+ words=verse_words,
260
+ metadata={
261
+ "processed_timestamp": datetime.now().isoformat(),
262
+ "word_count": len(verse_words)
263
+ }
264
+ )
265
+ self._save_verse_data(verse_data)
266
+ return verse_data
267
+ except Exception as e:
268
+ logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}")
269
+ logger.error(traceback.format_exc())
270
+ return None
271
+
272
+ def _save_verse_data(self, verse_data: VerseData):
273
+ """Saves processed verse data as JSON and TXT."""
274
+ try:
275
+ verse_ref = f"{verse_data.chapter}:{verse_data.verse}"
276
+ json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json')
277
+ with open(json_path, 'w', encoding='utf-8') as f:
278
+ json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2)
279
+ txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt')
280
+ with open(txt_path, 'w', encoding='utf-8') as f:
281
+ f.write(f"=== Verse {verse_ref} ===\n\n")
282
+ f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n")
283
+ f.write(f"Translation:\n{verse_data.translation}\n\n")
284
+ f.write("Word Analysis:\n")
285
+ for i, word in enumerate(verse_data.words, 1):
286
+ f.write(f"\nWord {i}:\n")
287
+ f.write(f" Arabic: {word.arabic}\n")
288
+ f.write(f" Translation: {word.translation}\n")
289
+ f.write(f" Root: {word.root}\n")
290
+ f.write(" Features:\n")
291
+ for feature in word.features:
292
+ f.write(f" - {feature}\n")
293
+ f.write("\n")
294
+ logger.info(f"Saved verse data to {json_path} and {txt_path}")
295
+ except Exception as e:
296
+ logger.error(f"Error saving verse data: {str(e)}")
297
+ logger.error(traceback.format_exc())
298
+
299
+ class QuranicModelTrainer:
300
+ """Trains the Gemma-2B model on Quranic data using chunked incremental updates."""
301
+ def __init__(self,
302
+ model_name: str = "google/gemma-2-2b",
303
+ processed_data_dir: str = "processed_data",
304
+ checkpoint_dir: str = "checkpoints"):
305
+ self.processed_data_dir = processed_data_dir
306
+ self.checkpoint_dir = checkpoint_dir
307
+ self.device = "cpu" # Training on CPU; ZeroGPU will handle GPU access.
308
+ logger.info("Loading tokenizer and model...")
309
+ self.tokenizer = AutoTokenizer.from_pretrained(
310
+ model_name,
311
+ use_auth_token=os.environ.get("HF_TOKEN"),
312
+ additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"],
313
+ trust_remote_code=True
314
+ )
315
+ self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
316
+ self.model = AutoModelForCausalLM.from_pretrained(
317
+ model_name,
318
+ use_auth_token=os.environ.get("HF_TOKEN"),
319
+ torch_dtype=torch.float32,
320
+ low_cpu_mem_usage=True,
321
+ trust_remote_code=True
322
+ )
323
+ self.model.resize_token_embeddings(len(self.tokenizer))
324
+ self.model.train()
325
+ # Disable caching and enable gradient checkpointing for memory savings.
326
+ self.model.config.use_cache = False
327
+ self.model.gradient_checkpointing_enable()
328
+
329
+ def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset:
330
+ """Creates a QuranicDataset from processed chapter data."""
331
+ return QuranicDataset(chapter_data, self.tokenizer)
332
+
333
+ def train_chapter(self,
334
+ chapter_num: int,
335
+ processed_verses: List[Dict],
336
+ chunk_size: int = 10,
337
+ num_train_epochs: int = 10,
338
+ per_device_train_batch_size: int = 1,
339
+ learning_rate: float = 3e-5,
340
+ weight_decay: float = 0.01,
341
+ gradient_accumulation_steps: int = 64) -> bool:
342
+ """
343
+ Splits chapter data into chunks and trains incrementally to reduce memory usage.
344
+ """
345
+ try:
346
+ total_examples = len(processed_verses)
347
+ total_chunks = math.ceil(total_examples / chunk_size)
348
+ logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.")
349
+ for chunk_index in range(total_chunks):
350
+ chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size]
351
+ dataset = self.prepare_training_data(chunk_data)
352
+ chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}")
353
+ os.makedirs(chunk_output_dir, exist_ok=True)
354
+ training_args = TrainingArguments(
355
+ output_dir=chunk_output_dir,
356
+ overwrite_output_dir=True,
357
+ num_train_epochs=num_train_epochs,
358
+ per_device_train_batch_size=per_device_train_batch_size,
359
+ learning_rate=learning_rate,
360
+ weight_decay=weight_decay,
361
+ gradient_accumulation_steps=gradient_accumulation_steps,
362
+ fp16=False,
363
+ remove_unused_columns=False,
364
+ logging_steps=50,
365
+ report_to="none",
366
+ evaluation_strategy="no",
367
+ no_cuda=True,
368
+ dataloader_num_workers=0,
369
+ dataloader_pin_memory=False
370
+ )
371
+ data_collator = DataCollatorForLanguageModeling(
372
+ tokenizer=self.tokenizer,
373
+ mlm=False
374
+ )
375
+ trainer = Trainer(
376
+ model=self.model,
377
+ args=training_args,
378
+ train_dataset=dataset,
379
+ tokenizer=self.tokenizer,
380
+ data_collator=data_collator
381
+ )
382
+ logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num}...")
383
+ trainer.train()
384
+ trainer.save_model(chunk_output_dir)
385
+ del trainer, dataset
386
+ gc.collect()
387
+ manage_memory()
388
+ logger.info(f"Completed training for Chapter {chapter_num}")
389
+ return True
390
+ except Exception as e:
391
+ logger.error(f"Error training chapter {chapter_num}: {str(e)}")
392
+ logger.error(traceback.format_exc())
393
+ return False
394
+
395
+ class QuranicPipeline:
396
+ """Integrates data processing and incremental model training for all chapters."""
397
+ def __init__(self,
398
+ source_dir: str = "source_files",
399
+ working_dir: str = "working_directory",
400
+ start_chapter: int = 1,
401
+ end_chapter: int = 114):
402
+ self.source_dir = source_dir
403
+ self.working_dir = working_dir
404
+ self.start_chapter = start_chapter
405
+ self.end_chapter = end_chapter
406
+ self.setup_directories()
407
+ global logger
408
+ logger = logging.getLogger(__name__)
409
+ self.state = {
410
+ "last_processed_chapter": 0,
411
+ "last_trained_chapter": 0,
412
+ "current_state": "initialized",
413
+ "errors": [],
414
+ "start_time": datetime.now().isoformat()
415
+ }
416
+ self.load_state()
417
+ try:
418
+ logger.info("Initializing Quranic Data Processor...")
419
+ self.processor = QuranicDataProcessor(
420
+ source_dir=self.source_dir,
421
+ output_dir=os.path.join(self.working_dir, "processed_data")
422
+ )
423
+ logger.info("Initializing Quranic Model Trainer...")
424
+ self.trainer = QuranicModelTrainer(
425
+ model_name="google/gemma-2-2b",
426
+ processed_data_dir=os.path.join(self.working_dir, "processed_data"),
427
+ checkpoint_dir=os.path.join(self.working_dir, "checkpoints")
428
+ )
429
+ self.state["current_state"] = "ready"
430
+ self.save_state()
431
+ except Exception as e:
432
+ self.handle_error("Initialization failed", e)
433
+ raise
434
+
435
+ def setup_directories(self):
436
+ dirs = [
437
+ self.working_dir,
438
+ os.path.join(self.working_directory, "processed_data"),
439
+ os.path.join(self.working_dir, "checkpoints"),
440
+ os.path.join(self.working_dir, "logs"),
441
+ os.path.join(self.working_dir, "state")
442
+ ]
443
+ for d in dirs:
444
+ os.makedirs(d, exist_ok=True)
445
+
446
+ def load_state(self):
447
+ state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
448
+ if os.path.exists(state_file):
449
+ try:
450
+ with open(state_file, 'r') as f:
451
+ saved_state = json.load(f)
452
+ self.state.update(saved_state)
453
+ logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, "
454
+ f"last trained chapter {self.state.get('last_trained_chapter')}")
455
+ except Exception as e:
456
+ logger.warning(f"Could not load previous state: {str(e)}")
457
+
458
+ def save_state(self):
459
+ state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
460
+ with open(state_file, 'w') as f:
461
+ json.dump(self.state, f, indent=2)
462
+
463
+ def handle_error(self, context: str, error: Exception):
464
+ error_detail = {
465
+ "timestamp": datetime.now().isoformat(),
466
+ "context": context,
467
+ "error": str(error),
468
+ "traceback": traceback.format_exc()
469
+ }
470
+ self.state.setdefault("errors", []).append(error_detail)
471
+ logger.error(f"{context}: {str(error)}")
472
+ self.save_state()
473
+
474
+ def run_pipeline(self):
475
+ """Runs processing and training for chapters sequentially."""
476
+ logger.info("Starting pipeline execution")
477
+ try:
478
+ if not self.processor.load_source_files():
479
+ raise Exception("Failed to load source files")
480
+ for chapter in range(self.start_chapter, self.end_chapter + 1):
481
+ logger.info(f"=== Processing Chapter {chapter} ===")
482
+ processed_chapter_data = []
483
+ verse = 1
484
+ while True:
485
+ verse_data = self.processor.process_verse(chapter, verse)
486
+ if verse_data is None:
487
+ break
488
+ processed_chapter_data.append(asdict(verse_data))
489
+ verse += 1
490
+ if processed_chapter_data:
491
+ success = self.trainer.train_chapter(chapter, processed_chapter_data)
492
+ if not success:
493
+ logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.")
494
+ break
495
+ self.state["last_trained_chapter"] = chapter
496
+ self.save_state()
497
+ else:
498
+ logger.warning(f"No processed data for Chapter {chapter}")
499
+ self.state["last_processed_chapter"] = chapter
500
+ self.save_state()
501
+ manage_memory()
502
+ logger.info("Pipeline execution completed")
503
+ except Exception as e:
504
+ self.handle_error("Pipeline execution failed", e)
505
+ raise
506
+
507
+ # Define a Gradio endpoint function that triggers the training pipeline.
508
+ @spaces.GPU() # Request ZeroGPU hardware.
509
+ def start_pipeline():
510
+ try:
511
+ pipeline = QuranicPipeline(
512
+ source_dir="source_files",
513
+ working_dir="working_directory",
514
+ start_chapter=1,
515
+ end_chapter=114
516
+ )
517
+ pipeline.run_pipeline()
518
+ return "Pipeline execution completed successfully."
519
+ except Exception as e:
520
+ return f"Pipeline execution failed: {str(e)}"
521
+
522
+ # Create a Gradio Interface with no inputs and a text output.
523
+ iface = gr.Interface(
524
+ fn=start_pipeline,
525
+ inputs=[],
526
+ outputs="text",
527
+ title="Quranic Training Pipeline",
528
+ description="Click 'Submit' to trigger the Quranic data processing and training pipeline on ZeroGPU."
529
+ )
530
+
531
+ if __name__ == "__main__":
532
+ iface.launch()