Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -78,6 +78,89 @@ MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
| 78 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 79 |
pipe = pipeline("text-generation", model=MODEL_ID, tokenizer=tokenizer)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
def llm_explain(record: dict) -> str:
|
| 82 |
if not record.get("ok", False):
|
| 83 |
return "Errors: " + "; ".join(record.get("errors", []))
|
|
|
|
| 78 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 79 |
pipe = pipeline("text-generation", model=MODEL_ID, tokenizer=tokenizer)
|
| 80 |
|
| 81 |
+
def _fmt_num(x, sig=4):
|
| 82 |
+
"""Safe, short formatting for numbers (returns string)."""
|
| 83 |
+
try:
|
| 84 |
+
if x is None:
|
| 85 |
+
return "N/A"
|
| 86 |
+
if isinstance(x, (int,)):
|
| 87 |
+
return str(x)
|
| 88 |
+
if isinstance(x, float):
|
| 89 |
+
# use general format with sig significant digits
|
| 90 |
+
return f"{x:.{sig}g}"
|
| 91 |
+
return str(x)
|
| 92 |
+
except Exception:
|
| 93 |
+
return str(x)
|
| 94 |
+
|
| 95 |
+
def _llm_generate(prompt: str, max_tokens: int = 300) -> str:
|
| 96 |
+
"""
|
| 97 |
+
Run the local pipeline, then strip any echoed prompt and common instruction text.
|
| 98 |
+
If the model echoes instructions, do one gentle retry with a simplified prompt.
|
| 99 |
+
"""
|
| 100 |
+
# Primary generation: deterministic (no sampling) is usually safer for engineering text.
|
| 101 |
+
try:
|
| 102 |
+
out = pipe(
|
| 103 |
+
prompt,
|
| 104 |
+
max_new_tokens=max_tokens,
|
| 105 |
+
do_sample=False,
|
| 106 |
+
temperature=0.0,
|
| 107 |
+
return_full_text=True,
|
| 108 |
+
)
|
| 109 |
+
except Exception:
|
| 110 |
+
# fallback: try return_full_text=False if first attempt fails for this model
|
| 111 |
+
out = pipe(
|
| 112 |
+
prompt,
|
| 113 |
+
max_new_tokens=max_tokens,
|
| 114 |
+
do_sample=False,
|
| 115 |
+
temperature=0.0,
|
| 116 |
+
return_full_text=False,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# get text (handle both pipeline variants)
|
| 120 |
+
text = ""
|
| 121 |
+
if isinstance(out, list) and len(out) > 0:
|
| 122 |
+
text = out[0].get("generated_text", "") or out[0].get("text", "") or ""
|
| 123 |
+
text = text or ""
|
| 124 |
+
# If the model returned the prompt + output, strip the prompt if present
|
| 125 |
+
if text.startswith(prompt):
|
| 126 |
+
text = text[len(prompt):]
|
| 127 |
+
text = text.strip()
|
| 128 |
+
|
| 129 |
+
# If output looks like it merely repeated instructions, try a simpler short-prompt retry
|
| 130 |
+
low_quality_indicators = [
|
| 131 |
+
"Use bullet points", "Be sure to include", "Do not", "Do NOT",
|
| 132 |
+
"Now produce", "System:", "User:", "Instruction:"
|
| 133 |
+
]
|
| 134 |
+
if (not text) or any(ind in text for ind in low_quality_indicators) or len(text) < 10:
|
| 135 |
+
# simple short retry prompt asking for only the final answer
|
| 136 |
+
simple_prompt = prompt + "\n\nNow produce ONLY the requested explanation below (no re-statement of the prompt or instructions):\n"
|
| 137 |
+
try:
|
| 138 |
+
out2 = pipe(
|
| 139 |
+
simple_prompt,
|
| 140 |
+
max_new_tokens=max_tokens,
|
| 141 |
+
do_sample=False,
|
| 142 |
+
temperature=0.0,
|
| 143 |
+
return_full_text=True,
|
| 144 |
+
)
|
| 145 |
+
except Exception:
|
| 146 |
+
out2 = pipe(
|
| 147 |
+
simple_prompt,
|
| 148 |
+
max_new_tokens=max_tokens,
|
| 149 |
+
do_sample=False,
|
| 150 |
+
temperature=0.0,
|
| 151 |
+
return_full_text=False,
|
| 152 |
+
)
|
| 153 |
+
text2 = out2[0].get("generated_text", "") or out2[0].get("text", "") or ""
|
| 154 |
+
if text2.startswith(simple_prompt):
|
| 155 |
+
text2 = text2[len(simple_prompt):]
|
| 156 |
+
text2 = text2.strip()
|
| 157 |
+
if text2 and len(text2) > 10 and not any(ind in text2 for ind in low_quality_indicators):
|
| 158 |
+
return text2
|
| 159 |
+
# final fallback:
|
| 160 |
+
return "[LLM failed to generate a usable explanation — try a different model or reduce the prompt size]"
|
| 161 |
+
|
| 162 |
+
return text
|
| 163 |
+
|
| 164 |
def llm_explain(record: dict) -> str:
|
| 165 |
if not record.get("ok", False):
|
| 166 |
return "Errors: " + "; ".join(record.get("errors", []))
|