Stable-Makeup-unofficial / spiga_draw.py
sky24h's picture
modify to support ZeroGPU
9cbebfb
raw
history blame contribute delete
5.81 kB
import os
import cv2
import tqdm
import torch
import numpy as np
from PIL import Image
from batch_face import RetinaFace
from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework
# The SPIGA checkpoint download often fails, so we downloaded it manually and will load it from a local path instead.
spiga_ckpt = os.path.join(os.path.dirname(__file__), "checkpoints/spiga_300wpublic.pt")
if not os.path.exists(spiga_ckpt):
from gdown import download
spiga_file_id = "1YrbScfMzrAAWMJQYgxdLZ9l57nmTdpQC"
download(id=spiga_file_id, output=spiga_ckpt)
spiga_config = ModelConfig("300wpublic")
spiga_config.load_model_url = False
spiga_config.model_weights_path = os.path.dirname(spiga_ckpt)
processor = SPIGAFramework(spiga_config)
face_detector = RetinaFace(gpu_id=0) if torch.cuda.is_available() else RetinaFace(gpu_id=-1)
def center_crop(image, size):
width, height = image.size
left = (width - size) // 2
top = (height - size) // 2
right = left + size
bottom = top + size
cropped_image = image.crop((left, top, right, bottom))
return cropped_image
def resize(image, size):
width, height = image.size
if width > height:
# 按宽度进行比例调整
new_width = size
new_height = int(height * (size / width))
else:
# 按高度进行比例调整
new_height = size
new_width = int(width * (size / height))
resized_image = image.resize((new_width, new_height))
return resized_image
def preprocess(example, name, path):
image = resize(example, 512)
# 调用中心剪裁函数
cropped_image = center_crop(image, 512)
# 保存剪裁后的图像
cropped_image.save(path + name)
return cropped_image
# We obtain the bbox from the existing landmarks in the dataset.
# We could use `dlib`, but this should be faster.
# Note that the `landmarks` are stored as strings.
def get_landmarks(frame_cv2):
faces = face_detector(frame_cv2, cv=True)
if len(faces) == 0:
raise ValueError("Face is not detected")
else:
coord = faces[0][0]
x, y, x1, y1 = coord
box = x, y, x1 - x, y1 - y
features = processor.inference(frame_cv2, [box])
landmarks = np.array(features["landmarks"])
return landmarks
def parse_landmarks(landmarks):
ldm = []
for landmark in landmarks:
ldm.append([(float(x), float(y)) for x, y in landmark])
return ldm
def bbox_from_landmarks(landmarks_):
landmarks = parse_landmarks(landmarks_)
bbox = []
for ldm in landmarks:
landmarks_x, landmarks_y = zip(*ldm)
x_min, x_max = min(landmarks_x), max(landmarks_x)
y_min, y_max = min(landmarks_y), max(landmarks_y)
width = x_max - x_min
height = y_max - y_min
# Give it a little room; I think it works anyway
x_min -= 5
y_min -= 5
width += 10
height += 10
bbox.append((x_min, y_min, width, height))
return bbox
def spiga_process(image):
ldms = get_landmarks(image)
if len(ldms) == 0:
return False
else:
image = np.array(image)
# BGR
image = image[:, :, ::-1]
bbox = bbox_from_landmarks(ldms)
features = processor.inference(image, [*bbox])
landmarks = features["landmarks"]
spigas = landmarks
return spigas
# For some reason this map doesn't work with num_proc > 1 :(
# TODO: run inference on GPU
# ## "Segmentation"
# We use bezier paths to draw contours and areas.
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.path import Path
import PIL
def get_patch(landmarks, color="lime", closed=False):
contour = landmarks
ops = [Path.MOVETO] + [Path.LINETO] * (len(contour) - 1)
facecolor = (0, 0, 0, 0) # Transparent fill color, if open
if closed:
contour.append(contour[0])
ops.append(Path.CLOSEPOLY)
facecolor = color
path = Path(contour, ops)
return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)
# Draw to a buffer.
def conditioning_from_landmarks(landmarks_, size=512):
# Precisely control output image size
dpi = 72
fig, ax = plt.subplots(1, figsize=[size / dpi, size / dpi], tight_layout={"pad": 0})
fig.set_dpi(dpi)
black = np.zeros((size, size, 3))
ax.imshow(black)
for landmarks in landmarks_:
face_patch = get_patch(landmarks[0:17])
l_eyebrow = get_patch(landmarks[17:22], color="yellow")
r_eyebrow = get_patch(landmarks[22:27], color="yellow")
nose_v = get_patch(landmarks[27:31], color="orange")
nose_h = get_patch(landmarks[31:36], color="orange")
l_eye = get_patch(landmarks[36:42], color="magenta", closed=True)
r_eye = get_patch(landmarks[42:48], color="magenta", closed=True)
outer_lips = get_patch(landmarks[48:60], color="cyan", closed=True)
inner_lips = get_patch(landmarks[60:68], color="blue", closed=True)
ax.add_patch(face_patch)
ax.add_patch(l_eyebrow)
ax.add_patch(r_eyebrow)
ax.add_patch(nose_v)
ax.add_patch(nose_h)
ax.add_patch(l_eye)
ax.add_patch(r_eye)
ax.add_patch(outer_lips)
ax.add_patch(inner_lips)
plt.axis("off")
fig.canvas.draw()
buffer, (width, height) = fig.canvas.print_to_buffer()
assert width == height
assert width == size
buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
buffer = buffer[:, :, 0:3]
plt.close(fig)
return PIL.Image.fromarray(buffer)
def spiga_segmentation(spiga, size):
landmarks = spiga
spiga_seg = conditioning_from_landmarks(landmarks, size=size)
return spiga_seg