Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,55 @@
|
|
1 |
"""
|
2 |
-
Real-time People Detection
|
3 |
|
4 |
-
This
|
5 |
-
The app provides an interface for uploading images or using webcam for real-time detection.
|
6 |
"""
|
7 |
|
8 |
import os
|
9 |
import time
|
|
|
|
|
|
|
10 |
import cv2
|
11 |
import numpy as np
|
12 |
-
import
|
13 |
-
import torch
|
14 |
from PIL import Image
|
15 |
-
|
16 |
-
from typing import Dict, List, Tuple, Any, Optional, Union
|
17 |
from ultralytics import YOLO
|
18 |
|
|
|
19 |
# Constants
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
FRAME_WIDTH = 640
|
23 |
FRAME_HEIGHT = 480
|
24 |
-
|
25 |
|
26 |
class PeopleDetector:
|
27 |
"""
|
28 |
-
A class for detecting people in images using a pre-trained
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"""
|
30 |
|
31 |
def __init__(
|
32 |
self,
|
33 |
-
model_name: str =
|
34 |
-
threshold: float =
|
35 |
device: Optional[str] = None,
|
36 |
):
|
37 |
"""
|
38 |
Initialize the people detector with a pre-trained model.
|
39 |
|
40 |
Args:
|
41 |
-
model_name: YOLOv8 model name to use
|
42 |
threshold: Confidence threshold for detection (0.0 to 1.0)
|
43 |
device: Device to run inference on (cuda/cpu). If None, will use cuda if available.
|
44 |
"""
|
@@ -62,7 +73,7 @@ class PeopleDetector:
|
|
62 |
Detect people in an image.
|
63 |
|
64 |
Args:
|
65 |
-
image: Input image as numpy array
|
66 |
|
67 |
Returns:
|
68 |
Tuple containing:
|
@@ -102,6 +113,125 @@ class PeopleDetector:
|
|
102 |
inference_time = time.time() - start_time
|
103 |
|
104 |
return detections, inference_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
def draw_detections(
|
107 |
image: np.ndarray,
|
@@ -168,10 +298,13 @@ def draw_detections(
|
|
168 |
|
169 |
return annotated_image
|
170 |
|
|
|
171 |
def add_performance_stats(
|
172 |
image: np.ndarray,
|
|
|
173 |
inference_time: float,
|
174 |
people_count: int,
|
|
|
175 |
bg_color: Tuple[int, int, int] = (0, 0, 0),
|
176 |
text_color: Tuple[int, int, int] = (255, 255, 255),
|
177 |
font_scale: float = 0.5,
|
@@ -182,8 +315,10 @@ def add_performance_stats(
|
|
182 |
|
183 |
Args:
|
184 |
image: Input image to add stats to
|
|
|
185 |
inference_time: Model inference time in seconds
|
186 |
people_count: Number of people detected
|
|
|
187 |
bg_color: Background color for stats box
|
188 |
text_color: Text color for stats
|
189 |
font_scale: Font scale for text
|
@@ -195,20 +330,28 @@ def add_performance_stats(
|
|
195 |
stats_image = image.copy()
|
196 |
|
197 |
# Create stats text
|
198 |
-
|
199 |
inference_text = f"Inference: {inference_time*1000:.1f}ms"
|
|
|
|
|
200 |
|
201 |
# Get text sizes
|
202 |
-
(
|
203 |
-
|
204 |
)
|
205 |
(inf_width, inf_height), _ = cv2.getTextSize(
|
206 |
inference_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness
|
207 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
# Calculate background box dimensions
|
210 |
-
box_width = max(
|
211 |
-
box_height =
|
212 |
|
213 |
# Draw background box
|
214 |
cv2.rectangle(
|
@@ -220,20 +363,44 @@ def add_performance_stats(
|
|
220 |
)
|
221 |
|
222 |
# Draw text
|
|
|
223 |
cv2.putText(
|
224 |
stats_image,
|
225 |
-
|
226 |
-
(20,
|
227 |
cv2.FONT_HERSHEY_SIMPLEX,
|
228 |
font_scale,
|
229 |
text_color,
|
230 |
thickness
|
231 |
)
|
232 |
|
|
|
233 |
cv2.putText(
|
234 |
stats_image,
|
235 |
inference_text,
|
236 |
-
(20,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
cv2.FONT_HERSHEY_SIMPLEX,
|
238 |
font_scale,
|
239 |
text_color,
|
@@ -242,207 +409,305 @@ def add_performance_stats(
|
|
242 |
|
243 |
return stats_image
|
244 |
|
245 |
-
# Initialize the detector
|
246 |
-
detector = PeopleDetector(model_name=MODEL_PATH, threshold=DEFAULT_THRESHOLD)
|
247 |
|
248 |
-
|
249 |
"""
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
threshold: Detection confidence threshold
|
255 |
-
|
256 |
-
Returns:
|
257 |
-
Annotated image with detections
|
258 |
"""
|
259 |
-
if image is None:
|
260 |
-
return None
|
261 |
-
|
262 |
-
# Update threshold if needed
|
263 |
-
if detector.threshold != threshold:
|
264 |
-
detector.threshold = threshold
|
265 |
-
|
266 |
-
# Convert to numpy array if needed
|
267 |
-
if isinstance(image, Image.Image):
|
268 |
-
image_array = np.array(image)
|
269 |
-
# Convert RGB to BGR (OpenCV format)
|
270 |
-
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
|
271 |
-
image_array = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
|
272 |
-
else:
|
273 |
-
image_array = image
|
274 |
-
|
275 |
-
# Run detection
|
276 |
-
detections, inference_time = detector.detect(image_array)
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
# Initialize video writer
|
327 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
328 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
329 |
-
|
330 |
-
# Process each frame
|
331 |
-
frame_count = 0
|
332 |
-
while cap.isOpened():
|
333 |
-
ret, frame = cap.read()
|
334 |
-
if not ret:
|
335 |
-
break
|
336 |
|
337 |
-
#
|
338 |
-
|
|
|
|
|
|
|
|
|
339 |
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
#
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
)
|
349 |
|
350 |
-
#
|
351 |
-
|
|
|
|
|
|
|
352 |
|
353 |
-
#
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
# Release resources
|
359 |
-
cap.release()
|
360 |
-
out.release()
|
361 |
-
|
362 |
-
return output_path
|
363 |
-
|
364 |
-
def webcam_detection(image, threshold):
|
365 |
-
"""
|
366 |
-
Process webcam frames with people detection.
|
367 |
-
|
368 |
-
Args:
|
369 |
-
image: Input image from webcam
|
370 |
-
threshold: Detection confidence threshold
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
-
|
396 |
-
|
397 |
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
)
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
424 |
)
|
425 |
-
|
426 |
-
with gr.Tab("Webcam Detection"):
|
427 |
-
with gr.Row():
|
428 |
-
with gr.Column():
|
429 |
-
webcam_threshold = gr.Slider(
|
430 |
-
minimum=0.1,
|
431 |
-
maximum=1.0,
|
432 |
-
value=DEFAULT_THRESHOLD,
|
433 |
-
step=0.05,
|
434 |
-
label="Detection Threshold"
|
435 |
-
)
|
436 |
-
|
437 |
-
webcam = gr.Webcam(label="Webcam")
|
438 |
-
webcam_output = gr.Image(label="Detection Result")
|
439 |
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
444 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
-
# Launch the app
|
447 |
if __name__ == "__main__":
|
448 |
-
|
|
|
1 |
"""
|
2 |
+
Real-time People Detection Streamlit application.
|
3 |
|
4 |
+
This is the main entry point for the Hugging Face Space application.
|
|
|
5 |
"""
|
6 |
|
7 |
import os
|
8 |
import time
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Tuple, Dict, Any, Optional, List
|
11 |
+
|
12 |
import cv2
|
13 |
import numpy as np
|
14 |
+
import streamlit as st
|
|
|
15 |
from PIL import Image
|
16 |
+
import torch
|
|
|
17 |
from ultralytics import YOLO
|
18 |
|
19 |
+
|
20 |
# Constants
|
21 |
+
ASSETS_DIR = Path(__file__).parent / "assets"
|
22 |
+
DEMO_VIDEOS = {
|
23 |
+
"One Person": ASSETS_DIR / "one-by-one-person-detection.mp4",
|
24 |
+
"Store Aisle": ASSETS_DIR / "store-aisle-detection.mp4",
|
25 |
+
"People Detection": ASSETS_DIR / "people-detection.mp4"
|
26 |
+
}
|
27 |
FRAME_WIDTH = 640
|
28 |
FRAME_HEIGHT = 480
|
29 |
+
|
30 |
|
31 |
class PeopleDetector:
|
32 |
"""
|
33 |
+
A class for detecting people in images using a pre-trained YOLOv8n model.
|
34 |
+
|
35 |
+
Attributes:
|
36 |
+
model_name: Name or path of the YOLOv8 model to use
|
37 |
+
threshold: Confidence threshold for detection
|
38 |
+
device: Device to run inference on (cuda/cpu)
|
39 |
+
model: The detection model
|
40 |
"""
|
41 |
|
42 |
def __init__(
|
43 |
self,
|
44 |
+
model_name: str = "yolov8n.pt",
|
45 |
+
threshold: float = 0.5,
|
46 |
device: Optional[str] = None,
|
47 |
):
|
48 |
"""
|
49 |
Initialize the people detector with a pre-trained model.
|
50 |
|
51 |
Args:
|
52 |
+
model_name: YOLOv8 model name to use ('yolov8n.pt' is the smallest one)
|
53 |
threshold: Confidence threshold for detection (0.0 to 1.0)
|
54 |
device: Device to run inference on (cuda/cpu). If None, will use cuda if available.
|
55 |
"""
|
|
|
73 |
Detect people in an image.
|
74 |
|
75 |
Args:
|
76 |
+
image: Input image as numpy array (BGR format from OpenCV)
|
77 |
|
78 |
Returns:
|
79 |
Tuple containing:
|
|
|
113 |
inference_time = time.time() - start_time
|
114 |
|
115 |
return detections, inference_time
|
116 |
+
|
117 |
+
def update_threshold(self, threshold: float) -> None:
|
118 |
+
"""
|
119 |
+
Update the detection confidence threshold.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
threshold: New threshold value (0.0 to 1.0)
|
123 |
+
"""
|
124 |
+
self.threshold = threshold
|
125 |
+
|
126 |
+
|
127 |
+
class VideoSource:
|
128 |
+
"""
|
129 |
+
A class for handling video input from different sources (webcam or file).
|
130 |
+
|
131 |
+
Attributes:
|
132 |
+
source: Camera index (int) or video file path (str)
|
133 |
+
width: Frame width to set (if possible)
|
134 |
+
height: Frame height to set (if possible)
|
135 |
+
fps_buffer_size: Number of frames to average for FPS calculation
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
source: Any = 0,
|
141 |
+
width: int = 640,
|
142 |
+
height: int = 480,
|
143 |
+
fps_buffer_size: int = 30,
|
144 |
+
):
|
145 |
+
"""
|
146 |
+
Initialize the video source.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
source: Camera index (int) or video file path (str)
|
150 |
+
width: Width to set for the captured frames
|
151 |
+
height: Height to set for the captured frames
|
152 |
+
fps_buffer_size: Number of frames to use for FPS averaging
|
153 |
+
"""
|
154 |
+
self.source = source
|
155 |
+
self.width = width
|
156 |
+
self.height = height
|
157 |
+
self.fps_buffer_size = fps_buffer_size
|
158 |
+
|
159 |
+
self.cap = None
|
160 |
+
self.frame_times = []
|
161 |
+
self.is_running = False
|
162 |
+
|
163 |
+
def start(self) -> bool:
|
164 |
+
"""
|
165 |
+
Start the video capture.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
bool: True if capture was started successfully, False otherwise
|
169 |
+
"""
|
170 |
+
if self.is_running:
|
171 |
+
return True
|
172 |
+
|
173 |
+
self.cap = cv2.VideoCapture(self.source)
|
174 |
+
|
175 |
+
if not self.cap.isOpened():
|
176 |
+
return False
|
177 |
+
|
178 |
+
# Try to set properties if it's a webcam
|
179 |
+
if isinstance(self.source, int):
|
180 |
+
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
|
181 |
+
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
|
182 |
+
|
183 |
+
self.is_running = True
|
184 |
+
self.frame_times = []
|
185 |
+
return True
|
186 |
+
|
187 |
+
def stop(self) -> None:
|
188 |
+
"""Stop the video capture and release resources."""
|
189 |
+
if self.is_running and self.cap is not None:
|
190 |
+
self.cap.release()
|
191 |
+
self.is_running = False
|
192 |
+
|
193 |
+
def read_frame(self) -> Tuple[bool, Optional[np.ndarray]]:
|
194 |
+
"""
|
195 |
+
Read a single frame from the video source.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
Tuple containing:
|
199 |
+
- Boolean indicating if frame was successfully read
|
200 |
+
- Image as numpy array (or None if no frame was read)
|
201 |
+
"""
|
202 |
+
if not self.is_running or self.cap is None:
|
203 |
+
return False, None
|
204 |
+
|
205 |
+
# Record time for FPS calculation
|
206 |
+
current_time = time.time()
|
207 |
+
|
208 |
+
# Read frame
|
209 |
+
ret, frame = self.cap.read()
|
210 |
+
|
211 |
+
if ret:
|
212 |
+
# Update FPS buffer
|
213 |
+
self.frame_times.append(current_time)
|
214 |
+
if len(self.frame_times) > self.fps_buffer_size:
|
215 |
+
self.frame_times.pop(0)
|
216 |
+
|
217 |
+
return ret, frame
|
218 |
+
|
219 |
+
def get_fps(self) -> float:
|
220 |
+
"""
|
221 |
+
Calculate the current FPS based on actual frame timings.
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
float: Current frames per second
|
225 |
+
"""
|
226 |
+
if len(self.frame_times) < 2:
|
227 |
+
return 0.0
|
228 |
+
|
229 |
+
# Calculate FPS from time differences
|
230 |
+
time_diff = self.frame_times[-1] - self.frame_times[0]
|
231 |
+
if time_diff > 0:
|
232 |
+
return (len(self.frame_times) - 1) / time_diff
|
233 |
+
return 0.0
|
234 |
+
|
235 |
|
236 |
def draw_detections(
|
237 |
image: np.ndarray,
|
|
|
298 |
|
299 |
return annotated_image
|
300 |
|
301 |
+
|
302 |
def add_performance_stats(
|
303 |
image: np.ndarray,
|
304 |
+
fps: float,
|
305 |
inference_time: float,
|
306 |
people_count: int,
|
307 |
+
inference_fps: float = 0.0,
|
308 |
bg_color: Tuple[int, int, int] = (0, 0, 0),
|
309 |
text_color: Tuple[int, int, int] = (255, 255, 255),
|
310 |
font_scale: float = 0.5,
|
|
|
315 |
|
316 |
Args:
|
317 |
image: Input image to add stats to
|
318 |
+
fps: Current FPS value
|
319 |
inference_time: Model inference time in seconds
|
320 |
people_count: Number of people detected
|
321 |
+
inference_fps: Inference FPS (model predictions per second)
|
322 |
bg_color: Background color for stats box
|
323 |
text_color: Text color for stats
|
324 |
font_scale: Font scale for text
|
|
|
330 |
stats_image = image.copy()
|
331 |
|
332 |
# Create stats text
|
333 |
+
fps_text = f"FPS: {fps:.1f}"
|
334 |
inference_text = f"Inference: {inference_time*1000:.1f}ms"
|
335 |
+
count_text = f"People: {people_count}"
|
336 |
+
inf_fps_text = f"Inference FPS: {inference_fps:.1f}"
|
337 |
|
338 |
# Get text sizes
|
339 |
+
(fps_width, fps_height), _ = cv2.getTextSize(
|
340 |
+
fps_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness
|
341 |
)
|
342 |
(inf_width, inf_height), _ = cv2.getTextSize(
|
343 |
inference_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness
|
344 |
)
|
345 |
+
(count_width, count_height), _ = cv2.getTextSize(
|
346 |
+
count_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness
|
347 |
+
)
|
348 |
+
(inf_fps_width, inf_fps_height), _ = cv2.getTextSize(
|
349 |
+
inf_fps_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness
|
350 |
+
)
|
351 |
|
352 |
# Calculate background box dimensions
|
353 |
+
box_width = max(fps_width, inf_width, count_width, inf_fps_width) + 20
|
354 |
+
box_height = fps_height + inf_height + count_height + inf_fps_height + 30
|
355 |
|
356 |
# Draw background box
|
357 |
cv2.rectangle(
|
|
|
363 |
)
|
364 |
|
365 |
# Draw text
|
366 |
+
y_offset = 10 + fps_height + 5
|
367 |
cv2.putText(
|
368 |
stats_image,
|
369 |
+
fps_text,
|
370 |
+
(20, y_offset),
|
371 |
cv2.FONT_HERSHEY_SIMPLEX,
|
372 |
font_scale,
|
373 |
text_color,
|
374 |
thickness
|
375 |
)
|
376 |
|
377 |
+
y_offset += inf_height + 5
|
378 |
cv2.putText(
|
379 |
stats_image,
|
380 |
inference_text,
|
381 |
+
(20, y_offset),
|
382 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
383 |
+
font_scale,
|
384 |
+
text_color,
|
385 |
+
thickness
|
386 |
+
)
|
387 |
+
|
388 |
+
y_offset += count_height + 5
|
389 |
+
cv2.putText(
|
390 |
+
stats_image,
|
391 |
+
count_text,
|
392 |
+
(20, y_offset),
|
393 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
394 |
+
font_scale,
|
395 |
+
text_color,
|
396 |
+
thickness
|
397 |
+
)
|
398 |
+
|
399 |
+
y_offset += inf_fps_height + 5
|
400 |
+
cv2.putText(
|
401 |
+
stats_image,
|
402 |
+
inf_fps_text,
|
403 |
+
(20, y_offset),
|
404 |
cv2.FONT_HERSHEY_SIMPLEX,
|
405 |
font_scale,
|
406 |
text_color,
|
|
|
409 |
|
410 |
return stats_image
|
411 |
|
|
|
|
|
412 |
|
413 |
+
class PeopleDetectionApp:
|
414 |
"""
|
415 |
+
Streamlit application for real-time people detection.
|
416 |
|
417 |
+
This class handles the Streamlit UI components and orchestrates
|
418 |
+
the video capture and detection processes.
|
|
|
|
|
|
|
|
|
419 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
+
def __init__(self):
|
422 |
+
"""Initialize the Streamlit application components."""
|
423 |
+
# Set page config
|
424 |
+
st.set_page_config(
|
425 |
+
page_title="Real-time People Detection",
|
426 |
+
page_icon="👁️",
|
427 |
+
layout="wide",
|
428 |
+
)
|
429 |
+
|
430 |
+
# Initialize session state
|
431 |
+
if "video_source" not in st.session_state:
|
432 |
+
st.session_state.video_source = None
|
433 |
+
if "detector" not in st.session_state:
|
434 |
+
st.session_state.detector = None
|
435 |
+
if "is_running" not in st.session_state:
|
436 |
+
st.session_state.is_running = False
|
437 |
+
if "frame_placeholder" not in st.session_state:
|
438 |
+
st.session_state.frame_placeholder = None
|
439 |
+
if "last_inference_time" not in st.session_state:
|
440 |
+
st.session_state.last_inference_time = 0.0
|
441 |
+
if "last_inference_timestamp" not in st.session_state:
|
442 |
+
st.session_state.last_inference_timestamp = 0.0
|
443 |
+
if "frame_count" not in st.session_state:
|
444 |
+
st.session_state.frame_count = 0
|
445 |
+
if "last_frame" not in st.session_state:
|
446 |
+
st.session_state.last_frame = None
|
447 |
+
if "last_detections" not in st.session_state:
|
448 |
+
st.session_state.last_detections = []
|
449 |
+
|
450 |
+
def create_ui(self):
|
451 |
+
"""Create the Streamlit UI components."""
|
452 |
+
# Page header
|
453 |
+
st.title("Real-time People Detection")
|
454 |
+
st.markdown(
|
455 |
+
"This application detects people in video streams using YOLOv8."
|
456 |
+
)
|
457 |
+
|
458 |
+
# Sidebar for controls
|
459 |
+
with st.sidebar:
|
460 |
+
st.header("Settings")
|
461 |
+
|
462 |
+
# Model selection
|
463 |
+
model_name = st.selectbox(
|
464 |
+
"Select detection model",
|
465 |
+
options=[
|
466 |
+
"yolov8n.pt", # Nano model (smallest)
|
467 |
+
],
|
468 |
+
index=0,
|
469 |
+
)
|
470 |
+
|
471 |
+
# Detection threshold
|
472 |
+
detection_threshold = st.slider(
|
473 |
+
"Detection threshold",
|
474 |
+
min_value=0.1,
|
475 |
+
max_value=1.0,
|
476 |
+
value=0.5,
|
477 |
+
step=0.05,
|
478 |
+
)
|
479 |
|
480 |
+
# Target inference FPS
|
481 |
+
target_fps = st.slider(
|
482 |
+
"Target inference FPS",
|
483 |
+
min_value=1,
|
484 |
+
max_value=30,
|
485 |
+
value=10,
|
486 |
+
step=1,
|
487 |
+
help="Control how many frames per second are sent to the model for inference. Lower values use less resources but may appear less smooth."
|
488 |
+
)
|
489 |
+
|
490 |
+
# For Hugging Face Space, we only provide demo videos (no webcam)
|
491 |
+
source_type = "Demo Video"
|
492 |
+
|
493 |
+
# Let user select which demo video to use
|
494 |
+
demo_selection = st.selectbox(
|
495 |
+
"Select demo video",
|
496 |
+
options=list(DEMO_VIDEOS.keys()),
|
497 |
+
index=0,
|
498 |
+
)
|
499 |
+
video_path = str(DEMO_VIDEOS[demo_selection])
|
500 |
+
source = video_path
|
501 |
+
|
502 |
+
# Control buttons
|
503 |
+
col1, col2 = st.columns(2)
|
504 |
+
|
505 |
+
with col1:
|
506 |
+
start_button = st.button(
|
507 |
+
"Start" if not st.session_state.is_running else "Restart",
|
508 |
+
use_container_width=True,
|
509 |
+
)
|
510 |
+
|
511 |
+
with col2:
|
512 |
+
stop_button = st.button(
|
513 |
+
"Stop",
|
514 |
+
use_container_width=True,
|
515 |
+
disabled=not st.session_state.is_running,
|
516 |
+
)
|
517 |
|
518 |
+
# Main area for video display
|
519 |
+
video_column, stats_column = st.columns([3, 1])
|
520 |
+
|
521 |
+
with video_column:
|
522 |
+
st.subheader("Detection Feed")
|
523 |
+
# Create a placeholder for the video frame
|
524 |
+
frame_placeholder = st.empty()
|
525 |
+
st.session_state.frame_placeholder = frame_placeholder
|
526 |
+
|
527 |
+
with stats_column:
|
528 |
+
st.subheader("Performance Stats")
|
529 |
+
# Create placeholders for stats
|
530 |
+
fps_text = st.empty()
|
531 |
+
inference_text = st.empty()
|
532 |
+
people_count = st.empty()
|
533 |
+
inference_fps_text = st.empty()
|
534 |
+
|
535 |
+
# Handle button actions
|
536 |
+
if start_button:
|
537 |
+
self.start_detection(source, model_name, detection_threshold, target_fps)
|
538 |
+
|
539 |
+
if stop_button:
|
540 |
+
self.stop_detection()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
|
542 |
+
# Return stats placeholders for updating
|
543 |
+
return fps_text, inference_text, people_count, inference_fps_text
|
544 |
+
|
545 |
+
def start_detection(self, source, model_name, threshold, target_fps):
|
546 |
+
"""
|
547 |
+
Start the detection process.
|
548 |
|
549 |
+
Args:
|
550 |
+
source: Video source (camera ID or file path)
|
551 |
+
model_name: YOLOv8 model to use
|
552 |
+
threshold: Detection confidence threshold
|
553 |
+
target_fps: Target frames per second for inference
|
554 |
+
"""
|
555 |
+
# Stop existing detection if running
|
556 |
+
self.stop_detection()
|
557 |
|
558 |
+
# Initialize video source
|
559 |
+
video_source = VideoSource(
|
560 |
+
source=source,
|
561 |
+
width=FRAME_WIDTH,
|
562 |
+
height=FRAME_HEIGHT,
|
563 |
)
|
564 |
|
565 |
+
# Initialize detector
|
566 |
+
detector = PeopleDetector(
|
567 |
+
model_name=model_name,
|
568 |
+
threshold=threshold,
|
569 |
+
)
|
570 |
|
571 |
+
# Start video capture
|
572 |
+
if not video_source.start():
|
573 |
+
st.error(f"Failed to open video source: {source}")
|
574 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
|
576 |
+
# Store objects in session state
|
577 |
+
st.session_state.video_source = video_source
|
578 |
+
st.session_state.detector = detector
|
579 |
+
st.session_state.is_running = True
|
580 |
+
st.session_state.target_fps = target_fps
|
581 |
+
st.session_state.last_inference_timestamp = time.time()
|
582 |
+
st.session_state.frame_count = 0
|
583 |
+
st.session_state.last_frame = None
|
584 |
+
st.session_state.last_detections = []
|
585 |
+
|
586 |
+
def stop_detection(self):
|
587 |
+
"""Stop the detection process and release resources."""
|
588 |
+
if st.session_state.video_source is not None:
|
589 |
+
st.session_state.video_source.stop()
|
590 |
+
st.session_state.video_source = None
|
591 |
+
|
592 |
+
st.session_state.detector = None
|
593 |
+
st.session_state.is_running = False
|
594 |
+
st.session_state.last_frame = None
|
595 |
+
st.session_state.last_detections = []
|
596 |
|
597 |
+
def update_frame(self, fps_text, inference_text, people_count, inference_fps_text):
|
598 |
+
"""
|
599 |
+
Update the video frame and stats.
|
600 |
+
|
601 |
+
Args:
|
602 |
+
fps_text: Streamlit element for FPS display
|
603 |
+
inference_text: Streamlit element for inference time display
|
604 |
+
people_count: Streamlit element for people count display
|
605 |
+
inference_fps_text: Streamlit element for inference FPS display
|
606 |
+
"""
|
607 |
+
if not st.session_state.is_running:
|
608 |
+
return
|
609 |
+
|
610 |
+
video_source = st.session_state.video_source
|
611 |
+
detector = st.session_state.detector
|
612 |
+
target_fps = st.session_state.target_fps
|
613 |
+
|
614 |
+
if video_source is None or detector is None:
|
615 |
+
return
|
616 |
|
617 |
+
# Read a new frame
|
618 |
+
ret, frame = video_source.read_frame()
|
619 |
|
620 |
+
if not ret:
|
621 |
+
# If we've reached the end of a video file, restart it
|
622 |
+
if not isinstance(video_source.source, int):
|
623 |
+
# Restart video
|
624 |
+
video_source.stop()
|
625 |
+
if video_source.start():
|
626 |
+
ret, frame = video_source.read_frame()
|
627 |
+
if not ret:
|
628 |
+
st.error("Failed to restart video")
|
629 |
+
self.stop_detection()
|
630 |
+
return
|
631 |
+
else:
|
632 |
+
st.error("Failed to restart video source")
|
633 |
+
self.stop_detection()
|
634 |
+
return
|
635 |
+
else:
|
636 |
+
st.error("Failed to read frame from camera")
|
637 |
+
self.stop_detection()
|
638 |
+
return
|
639 |
+
|
640 |
+
# Calculate current FPS
|
641 |
+
fps = video_source.get_fps()
|
642 |
+
|
643 |
+
# Determine if we should run inference on this frame
|
644 |
+
current_time = time.time()
|
645 |
+
time_since_last_inference = current_time - st.session_state.last_inference_timestamp
|
646 |
+
inference_interval = 1.0 / target_fps
|
647 |
+
|
648 |
+
# Use cached detections or run new detection
|
649 |
+
detections = []
|
650 |
+
inference_time = 0
|
651 |
+
|
652 |
+
# Run a new detection if enough time has passed
|
653 |
+
if time_since_last_inference >= inference_interval:
|
654 |
+
detections, inference_time = detector.detect(frame)
|
655 |
|
656 |
+
# Update cache
|
657 |
+
st.session_state.last_frame = frame.copy()
|
658 |
+
st.session_state.last_detections = detections
|
659 |
+
st.session_state.last_inference_time = inference_time
|
660 |
+
st.session_state.last_inference_timestamp = current_time
|
661 |
+
else:
|
662 |
+
# Use cached detections
|
663 |
+
detections = st.session_state.last_detections
|
664 |
+
inference_time = st.session_state.last_inference_time
|
665 |
+
|
666 |
+
# Draw detections on the frame
|
667 |
+
frame_with_detections = draw_detections(frame, detections)
|
668 |
+
|
669 |
+
# Calculate inference FPS
|
670 |
+
if time_since_last_inference > 0:
|
671 |
+
inference_fps = 1.0 / time_since_last_inference
|
672 |
+
else:
|
673 |
+
inference_fps = 0.0
|
674 |
|
675 |
+
# Add performance stats to the frame
|
676 |
+
frame_with_stats = add_performance_stats(
|
677 |
+
frame_with_detections,
|
678 |
+
fps,
|
679 |
+
inference_time,
|
680 |
+
len(detections),
|
681 |
+
inference_fps
|
682 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
|
684 |
+
# Display the frame
|
685 |
+
st.session_state.frame_placeholder.image(
|
686 |
+
frame_with_stats,
|
687 |
+
channels="BGR",
|
688 |
+
use_column_width=True
|
689 |
)
|
690 |
+
|
691 |
+
# Update stats
|
692 |
+
fps_text.metric("FPS", f"{fps:.1f}")
|
693 |
+
inference_text.metric("Inference Time", f"{inference_time*1000:.1f} ms")
|
694 |
+
people_count.metric("People Detected", len(detections))
|
695 |
+
inference_fps_text.metric("Inference FPS", f"{inference_fps:.1f}")
|
696 |
+
|
697 |
+
# Increment frame counter
|
698 |
+
st.session_state.frame_count += 1
|
699 |
+
|
700 |
+
|
701 |
+
def main():
|
702 |
+
"""Main entry point for the application."""
|
703 |
+
app = PeopleDetectionApp()
|
704 |
+
fps_text, inference_text, people_count, inference_fps_text = app.create_ui()
|
705 |
+
|
706 |
+
# Infinite loop for updating the video frame
|
707 |
+
while st.session_state.is_running:
|
708 |
+
app.update_frame(fps_text, inference_text, people_count, inference_fps_text)
|
709 |
+
time.sleep(0.01) # Small delay to prevent overloading the CPU
|
710 |
+
|
711 |
|
|
|
712 |
if __name__ == "__main__":
|
713 |
+
main()
|