ekt1701 commited on
Commit
561df63
·
verified ·
1 Parent(s): 05bad85

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -48
app.py CHANGED
@@ -9,55 +9,62 @@ from translatepy import Translator
9
  import numpy as np
10
  import random
11
  import os
12
- hf_token = os.environ.get('HF_TOKEN')
13
- from io import BytesIO
14
 
 
15
  translator = Translator()
16
 
17
  # Constants
18
  model = "black-forest-labs/FLUX.1-dev"
19
-
20
-
21
-
22
  MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 2048
24
 
25
- # Ensure model and scheduler are initialized in GPU-enabled function
26
- if torch.cuda.is_available():
27
- transformer = FluxTransformer2DModel.from_single_file(
28
- "https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v27.safetensors",
29
- torch_dtype=torch.bfloat16
30
- )
 
 
 
 
 
 
 
 
 
 
 
 
31
  pipe = FluxPipeline.from_pretrained(
32
- model,
33
  transformer=transformer,
34
- torch_dtype=torch.bfloat16, token=hf_token)
 
 
35
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
36
  pipe.scheduler.config, use_beta_sigmas=True
37
  )
38
- pipe.to("cuda")
39
-
40
-
41
- @spaces.GPU()
42
- def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
43
  if randomize_seed:
44
  seed = random.randint(0, MAX_SEED)
45
- generator = torch.Generator().manual_seed(seed)
46
- image = pipe(
47
- prompt = prompt,
48
- width = width,
49
- height = height,
50
- num_inference_steps = num_inference_steps,
51
- guidance_scale=guidance_scale,
52
- num_images_per_prompt=nums,
53
- generator = generator
54
- ).images
55
-
56
 
57
- return image, seed
 
 
 
 
 
 
 
 
58
 
 
59
 
60
- css="""
61
  #col-container {
62
  margin: 0 auto;
63
  max-width: 1024px;
@@ -65,12 +72,10 @@ css="""
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
68
-
69
  with gr.Column(elem_id="col-container"):
70
  gr.HTML("<h1><center>Model Testing</center></h1><p><center>Chroma</center></p>")
71
 
72
  with gr.Row():
73
-
74
  prompt = gr.Text(
75
  label="Prompt",
76
  show_label=False,
@@ -78,15 +83,12 @@ with gr.Blocks(css=css) as demo:
78
  placeholder="Enter your prompt",
79
  container=False,
80
  )
81
-
82
  run_button = gr.Button("Run", scale=0)
83
 
84
- result = gr.Gallery(label="Gallery", format="png", columns = 1, preview=True, height=400)
85
 
86
  with gr.Accordion("Advanced Settings", open=False):
87
-
88
  with gr.Row():
89
-
90
  width = gr.Slider(
91
  label="Width",
92
  minimum=256,
@@ -94,7 +96,6 @@ with gr.Blocks(css=css) as demo:
94
  step=32,
95
  value=1024,
96
  )
97
-
98
  height = gr.Slider(
99
  label="Height",
100
  minimum=256,
@@ -104,7 +105,6 @@ with gr.Blocks(css=css) as demo:
104
  )
105
 
106
  with gr.Row():
107
-
108
  num_inference_steps = gr.Slider(
109
  label="Number of inference steps",
110
  minimum=1,
@@ -112,7 +112,6 @@ with gr.Blocks(css=css) as demo:
112
  step=1,
113
  value=30,
114
  )
115
-
116
  guidance_scale = gr.Slider(
117
  label="Guidance Scale",
118
  minimum=0,
@@ -121,9 +120,7 @@ with gr.Blocks(css=css) as demo:
121
  value=3.5,
122
  )
123
 
124
-
125
  with gr.Row():
126
-
127
  nums = gr.Slider(
128
  label="Number of Images",
129
  minimum=1,
@@ -132,7 +129,6 @@ with gr.Blocks(css=css) as demo:
132
  value=1,
133
  scale=1,
134
  )
135
-
136
  seed = gr.Slider(
137
  label="Seed",
138
  minimum=0,
@@ -140,14 +136,13 @@ with gr.Blocks(css=css) as demo:
140
  step=1,
141
  value=-1,
142
  )
143
-
144
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
145
 
146
  gr.on(
147
  triggers=[run_button.click, prompt.submit],
148
- fn = infer,
149
- inputs = [prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
150
- outputs = [result, seed]
151
  )
152
-
153
  demo.launch()
 
9
  import numpy as np
10
  import random
11
  import os
 
 
12
 
13
+ hf_token = os.environ.get('HF_TOKEN')
14
  translator = Translator()
15
 
16
  # Constants
17
  model = "black-forest-labs/FLUX.1-dev"
 
 
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 2048
20
 
21
+ @spaces.GPU()
22
+ def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress雷神加速器梯子 = "cuda" if torch.cuda.is_available() else "cpu"
23
+ # Initialize model inside the GPU-enabled function
24
+ try:
25
+ transformer = FluxTransformer2DModel.from_single_file(
26
+ "https://huggingface.co/lodestones/Chroma/resolve/main/chroma-unlocked-v27.safetensors",
27
+ torch_dtype=torch.bfloat16,
28
+ token=hf_token
29
+ )
30
+ except KeyError as e:
31
+ print(f"Error loading chroma-unlocked-v27.safetensors: {e}. Falling back to pretrained model.")
32
+ transformer = FluxTransformer2DModel.from_pretrained(
33
+ "lodestones/Chroma",
34
+ subfolder="transformer",
35
+ torch_dtype=torch.bfloat16,
36
+ token=hf_token
37
+ )
38
+
39
  pipe = FluxPipeline.from_pretrained(
40
+ model,
41
  transformer=transformer,
42
+ torch_dtype=torch.bfloat16,
43
+ token=hf_token
44
+ )
45
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
46
  pipe.scheduler.config, use_beta_sigmas=True
47
  )
48
+ pipe.to(device)
49
+
50
+ # Generate images
 
 
51
  if randomize_seed:
52
  seed = random.randint(0, MAX_SEED)
53
+ generator = torch.Generator(device=device).manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
54
 
55
+ images = pipe(
56
+ prompt=prompt,
57
+ width=width,
58
+ height=height,
59
+ num_inference_steps=num_inference_steps,
60
+ guidance_scale=guidance_scale,
61
+ num_images_per_prompt=nums,
62
+ generator=generator
63
+ ).images
64
 
65
+ return images, seed
66
 
67
+ css = """
68
  #col-container {
69
  margin: 0 auto;
70
  max-width: 1024px;
 
72
  """
73
 
74
  with gr.Blocks(css=css) as demo:
 
75
  with gr.Column(elem_id="col-container"):
76
  gr.HTML("<h1><center>Model Testing</center></h1><p><center>Chroma</center></p>")
77
 
78
  with gr.Row():
 
79
  prompt = gr.Text(
80
  label="Prompt",
81
  show_label=False,
 
83
  placeholder="Enter your prompt",
84
  container=False,
85
  )
 
86
  run_button = gr.Button("Run", scale=0)
87
 
88
+ result = gr.Gallery(label="Gallery", format="png", columns=1, preview=True, height=400)
89
 
90
  with gr.Accordion("Advanced Settings", open=False):
 
91
  with gr.Row():
 
92
  width = gr.Slider(
93
  label="Width",
94
  minimum=256,
 
96
  step=32,
97
  value=1024,
98
  )
 
99
  height = gr.Slider(
100
  label="Height",
101
  minimum=256,
 
105
  )
106
 
107
  with gr.Row():
 
108
  num_inference_steps = gr.Slider(
109
  label="Number of inference steps",
110
  minimum=1,
 
112
  step=1,
113
  value=30,
114
  )
 
115
  guidance_scale = gr.Slider(
116
  label="Guidance Scale",
117
  minimum=0,
 
120
  value=3.5,
121
  )
122
 
 
123
  with gr.Row():
 
124
  nums = gr.Slider(
125
  label="Number of Images",
126
  minimum=1,
 
129
  value=1,
130
  scale=1,
131
  )
 
132
  seed = gr.Slider(
133
  label="Seed",
134
  minimum=0,
 
136
  step=1,
137
  value=-1,
138
  )
 
139
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
140
 
141
  gr.on(
142
  triggers=[run_button.click, prompt.submit],
143
+ fn=infer,
144
+ inputs=[prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
145
+ outputs=[result, seed]
146
  )
147
+
148
  demo.launch()