ekt1701 commited on
Commit
5fc596d
·
verified ·
1 Parent(s): 355b9a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -46
app.py CHANGED
@@ -4,66 +4,60 @@ import torch
4
  from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
5
  from huggingface_hub import hf_hub_download
6
  from PIL import Image
 
 
7
  import numpy as np
8
  import random
9
  import os
10
-
11
  hf_token = os.environ.get('HF_TOKEN')
 
 
 
12
 
13
  # Constants
14
  model = "black-forest-labs/FLUX.1-dev"
 
 
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
  MAX_IMAGE_SIZE = 2048
17
 
18
- @spaces.GPU()
19
- def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
20
- device = "cuda" if torch.cuda.is_available() else "cpu"
21
-
22
- # Initialize model inside the GPU-enabled function
23
- try:
24
- transformer = FluxTransformer2DModel.from_single_file(
25
- "https://huggingface.co/lodestones/Chroma/resolve/main/chroma-unlocked-v27.safetensors",
26
- torch_dtype=torch.bfloat16,
27
- token=hf_token
28
- )
29
- except KeyError as e:
30
- print(f"Error loading chroma-unlocked-v27.safetensors: {e}. Falling back to pretrained model.")
31
- transformer = FluxTransformer2DModel.from_pretrained(
32
- "lodestones/Chroma",
33
- subfolder="transformer",
34
- torch_dtype=torch.bfloat16,
35
- token=hf_token
36
- )
37
-
38
  pipe = FluxPipeline.from_pretrained(
39
- model,
40
  transformer=transformer,
41
- torch_dtype=torch.bfloat16,
42
- token=hf_token
43
- )
44
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
45
  pipe.scheduler.config, use_beta_sigmas=True
46
  )
47
- pipe.to(device)
48
-
49
- # Generate images
 
 
50
  if randomize_seed:
51
  seed = random.randint(0, MAX_SEED)
52
- generator = torch.Generator(device=device).manual_seed(seed)
53
-
54
- images = pipe(
55
- prompt=prompt,
56
- width=width,
57
- height=height,
58
- num_inference_steps=num_inference_steps,
59
- guidance_scale=guidance_scale,
60
- num_images_per_prompt=nums,
61
- generator=generator
62
  ).images
63
 
64
- return images, seed
 
65
 
66
- css = """
 
67
  #col-container {
68
  margin: 0 auto;
69
  max-width: 1024px;
@@ -71,10 +65,12 @@ css = """
71
  """
72
 
73
  with gr.Blocks(css=css) as demo:
 
74
  with gr.Column(elem_id="col-container"):
75
- gr.HTML("<h1><center>Model Testing</center></h1><p><center>Chroma</center></p>")
76
 
77
  with gr.Row():
 
78
  prompt = gr.Text(
79
  label="Prompt",
80
  show_label=False,
@@ -82,12 +78,15 @@ with gr.Blocks(css=css) as demo:
82
  placeholder="Enter your prompt",
83
  container=False,
84
  )
 
85
  run_button = gr.Button("Run", scale=0)
86
 
87
- result = gr.Gallery(label="Gallery", format="png", columns=1, preview=True, height=400)
88
 
89
  with gr.Accordion("Advanced Settings", open=False):
 
90
  with gr.Row():
 
91
  width = gr.Slider(
92
  label="Width",
93
  minimum=256,
@@ -95,6 +94,7 @@ with gr.Blocks(css=css) as demo:
95
  step=32,
96
  value=1024,
97
  )
 
98
  height = gr.Slider(
99
  label="Height",
100
  minimum=256,
@@ -104,6 +104,7 @@ with gr.Blocks(css=css) as demo:
104
  )
105
 
106
  with gr.Row():
 
107
  num_inference_steps = gr.Slider(
108
  label="Number of inference steps",
109
  minimum=1,
@@ -111,6 +112,7 @@ with gr.Blocks(css=css) as demo:
111
  step=1,
112
  value=30,
113
  )
 
114
  guidance_scale = gr.Slider(
115
  label="Guidance Scale",
116
  minimum=0,
@@ -119,7 +121,9 @@ with gr.Blocks(css=css) as demo:
119
  value=3.5,
120
  )
121
 
 
122
  with gr.Row():
 
123
  nums = gr.Slider(
124
  label="Number of Images",
125
  minimum=1,
@@ -128,6 +132,7 @@ with gr.Blocks(css=css) as demo:
128
  value=1,
129
  scale=1,
130
  )
 
131
  seed = gr.Slider(
132
  label="Seed",
133
  minimum=0,
@@ -135,13 +140,14 @@ with gr.Blocks(css=css) as demo:
135
  step=1,
136
  value=-1,
137
  )
 
138
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
139
 
140
  gr.on(
141
  triggers=[run_button.click, prompt.submit],
142
- fn=infer,
143
- inputs=[prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
144
- outputs=[result, seed]
145
  )
146
-
147
  demo.launch()
 
4
  from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
5
  from huggingface_hub import hf_hub_download
6
  from PIL import Image
7
+ import requests
8
+ from translatepy import Translator
9
  import numpy as np
10
  import random
11
  import os
 
12
  hf_token = os.environ.get('HF_TOKEN')
13
+ from io import BytesIO
14
+
15
+ translator = Translator()
16
 
17
  # Constants
18
  model = "black-forest-labs/FLUX.1-dev"
19
+
20
+
21
+
22
  MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 2048
24
 
25
+ # Ensure model and scheduler are initialized in GPU-enabled function
26
+ if torch.cuda.is_available():
27
+ transformer = FluxTransformer2DModel.from_single_file(
28
+ "https://huggingface.co/ekt1701/Test_case/blob/main/rayflux_v10.safetensors",
29
+ torch_dtype=torch.bfloat16
30
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  pipe = FluxPipeline.from_pretrained(
32
+ model,
33
  transformer=transformer,
34
+ torch_dtype=torch.bfloat16, token=hf_token)
 
 
35
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
36
  pipe.scheduler.config, use_beta_sigmas=True
37
  )
38
+ pipe.to("cuda")
39
+
40
+
41
+ @spaces.GPU()
42
+ def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
43
  if randomize_seed:
44
  seed = random.randint(0, MAX_SEED)
45
+ generator = torch.Generator().manual_seed(seed)
46
+ image = pipe(
47
+ prompt = prompt,
48
+ width = width,
49
+ height = height,
50
+ num_inference_steps = num_inference_steps,
51
+ guidance_scale=guidance_scale,
52
+ num_images_per_prompt=nums,
53
+ generator = generator
 
54
  ).images
55
 
56
+
57
+ return image, seed
58
 
59
+
60
+ css="""
61
  #col-container {
62
  margin: 0 auto;
63
  max-width: 1024px;
 
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
68
+
69
  with gr.Column(elem_id="col-container"):
70
+ gr.HTML("<h1><center>Image Model Testing</center></h1><p><center>RayFlux V1 Model.</center></p>")
71
 
72
  with gr.Row():
73
+
74
  prompt = gr.Text(
75
  label="Prompt",
76
  show_label=False,
 
78
  placeholder="Enter your prompt",
79
  container=False,
80
  )
81
+
82
  run_button = gr.Button("Run", scale=0)
83
 
84
+ result = gr.Gallery(label="Gallery", format="png", columns = 1, preview=True, height=400)
85
 
86
  with gr.Accordion("Advanced Settings", open=False):
87
+
88
  with gr.Row():
89
+
90
  width = gr.Slider(
91
  label="Width",
92
  minimum=256,
 
94
  step=32,
95
  value=1024,
96
  )
97
+
98
  height = gr.Slider(
99
  label="Height",
100
  minimum=256,
 
104
  )
105
 
106
  with gr.Row():
107
+
108
  num_inference_steps = gr.Slider(
109
  label="Number of inference steps",
110
  minimum=1,
 
112
  step=1,
113
  value=30,
114
  )
115
+
116
  guidance_scale = gr.Slider(
117
  label="Guidance Scale",
118
  minimum=0,
 
121
  value=3.5,
122
  )
123
 
124
+
125
  with gr.Row():
126
+
127
  nums = gr.Slider(
128
  label="Number of Images",
129
  minimum=1,
 
132
  value=1,
133
  scale=1,
134
  )
135
+
136
  seed = gr.Slider(
137
  label="Seed",
138
  minimum=0,
 
140
  step=1,
141
  value=-1,
142
  )
143
+
144
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
145
 
146
  gr.on(
147
  triggers=[run_button.click, prompt.submit],
148
+ fn = infer,
149
+ inputs = [prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
150
+ outputs = [result, seed]
151
  )
152
+
153
  demo.launch()