Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,66 +4,60 @@ import torch
|
|
4 |
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
|
|
|
|
7 |
import numpy as np
|
8 |
import random
|
9 |
import os
|
10 |
-
|
11 |
hf_token = os.environ.get('HF_TOKEN')
|
|
|
|
|
|
|
12 |
|
13 |
# Constants
|
14 |
model = "black-forest-labs/FLUX.1-dev"
|
|
|
|
|
|
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 2048
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
transformer = FluxTransformer2DModel.from_single_file(
|
25 |
-
"https://huggingface.co/lodestones/Chroma/resolve/main/chroma-unlocked-v27.safetensors",
|
26 |
-
torch_dtype=torch.bfloat16,
|
27 |
-
token=hf_token
|
28 |
-
)
|
29 |
-
except KeyError as e:
|
30 |
-
print(f"Error loading chroma-unlocked-v27.safetensors: {e}. Falling back to pretrained model.")
|
31 |
-
transformer = FluxTransformer2DModel.from_pretrained(
|
32 |
-
"lodestones/Chroma",
|
33 |
-
subfolder="transformer",
|
34 |
-
torch_dtype=torch.bfloat16,
|
35 |
-
token=hf_token
|
36 |
-
)
|
37 |
-
|
38 |
pipe = FluxPipeline.from_pretrained(
|
39 |
-
model,
|
40 |
transformer=transformer,
|
41 |
-
torch_dtype=torch.bfloat16,
|
42 |
-
token=hf_token
|
43 |
-
)
|
44 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
|
45 |
pipe.scheduler.config, use_beta_sigmas=True
|
46 |
)
|
47 |
-
pipe.to(
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
if randomize_seed:
|
51 |
seed = random.randint(0, MAX_SEED)
|
52 |
-
generator = torch.Generator(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
generator=generator
|
62 |
).images
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
|
|
67 |
#col-container {
|
68 |
margin: 0 auto;
|
69 |
max-width: 1024px;
|
@@ -71,10 +65,12 @@ css = """
|
|
71 |
"""
|
72 |
|
73 |
with gr.Blocks(css=css) as demo:
|
|
|
74 |
with gr.Column(elem_id="col-container"):
|
75 |
-
gr.HTML("<h1><center>Model Testing</center></h1><p><center>
|
76 |
|
77 |
with gr.Row():
|
|
|
78 |
prompt = gr.Text(
|
79 |
label="Prompt",
|
80 |
show_label=False,
|
@@ -82,12 +78,15 @@ with gr.Blocks(css=css) as demo:
|
|
82 |
placeholder="Enter your prompt",
|
83 |
container=False,
|
84 |
)
|
|
|
85 |
run_button = gr.Button("Run", scale=0)
|
86 |
|
87 |
-
result = gr.Gallery(label="Gallery", format="png", columns=1, preview=True, height=400)
|
88 |
|
89 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
90 |
with gr.Row():
|
|
|
91 |
width = gr.Slider(
|
92 |
label="Width",
|
93 |
minimum=256,
|
@@ -95,6 +94,7 @@ with gr.Blocks(css=css) as demo:
|
|
95 |
step=32,
|
96 |
value=1024,
|
97 |
)
|
|
|
98 |
height = gr.Slider(
|
99 |
label="Height",
|
100 |
minimum=256,
|
@@ -104,6 +104,7 @@ with gr.Blocks(css=css) as demo:
|
|
104 |
)
|
105 |
|
106 |
with gr.Row():
|
|
|
107 |
num_inference_steps = gr.Slider(
|
108 |
label="Number of inference steps",
|
109 |
minimum=1,
|
@@ -111,6 +112,7 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
step=1,
|
112 |
value=30,
|
113 |
)
|
|
|
114 |
guidance_scale = gr.Slider(
|
115 |
label="Guidance Scale",
|
116 |
minimum=0,
|
@@ -119,7 +121,9 @@ with gr.Blocks(css=css) as demo:
|
|
119 |
value=3.5,
|
120 |
)
|
121 |
|
|
|
122 |
with gr.Row():
|
|
|
123 |
nums = gr.Slider(
|
124 |
label="Number of Images",
|
125 |
minimum=1,
|
@@ -128,6 +132,7 @@ with gr.Blocks(css=css) as demo:
|
|
128 |
value=1,
|
129 |
scale=1,
|
130 |
)
|
|
|
131 |
seed = gr.Slider(
|
132 |
label="Seed",
|
133 |
minimum=0,
|
@@ -135,13 +140,14 @@ with gr.Blocks(css=css) as demo:
|
|
135 |
step=1,
|
136 |
value=-1,
|
137 |
)
|
|
|
138 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
139 |
|
140 |
gr.on(
|
141 |
triggers=[run_button.click, prompt.submit],
|
142 |
-
fn=infer,
|
143 |
-
inputs=[prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
|
144 |
-
outputs=[result, seed]
|
145 |
)
|
146 |
-
|
147 |
demo.launch()
|
|
|
4 |
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
7 |
+
import requests
|
8 |
+
from translatepy import Translator
|
9 |
import numpy as np
|
10 |
import random
|
11 |
import os
|
|
|
12 |
hf_token = os.environ.get('HF_TOKEN')
|
13 |
+
from io import BytesIO
|
14 |
+
|
15 |
+
translator = Translator()
|
16 |
|
17 |
# Constants
|
18 |
model = "black-forest-labs/FLUX.1-dev"
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 2048
|
24 |
|
25 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
transformer = FluxTransformer2DModel.from_single_file(
|
28 |
+
"https://huggingface.co/ekt1701/Test_case/blob/main/rayflux_v10.safetensors",
|
29 |
+
torch_dtype=torch.bfloat16
|
30 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
pipe = FluxPipeline.from_pretrained(
|
32 |
+
model,
|
33 |
transformer=transformer,
|
34 |
+
torch_dtype=torch.bfloat16, token=hf_token)
|
|
|
|
|
35 |
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
|
36 |
pipe.scheduler.config, use_beta_sigmas=True
|
37 |
)
|
38 |
+
pipe.to("cuda")
|
39 |
+
|
40 |
+
|
41 |
+
@spaces.GPU()
|
42 |
+
def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
|
43 |
if randomize_seed:
|
44 |
seed = random.randint(0, MAX_SEED)
|
45 |
+
generator = torch.Generator().manual_seed(seed)
|
46 |
+
image = pipe(
|
47 |
+
prompt = prompt,
|
48 |
+
width = width,
|
49 |
+
height = height,
|
50 |
+
num_inference_steps = num_inference_steps,
|
51 |
+
guidance_scale=guidance_scale,
|
52 |
+
num_images_per_prompt=nums,
|
53 |
+
generator = generator
|
|
|
54 |
).images
|
55 |
|
56 |
+
|
57 |
+
return image, seed
|
58 |
|
59 |
+
|
60 |
+
css="""
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
max-width: 1024px;
|
|
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
+
|
69 |
with gr.Column(elem_id="col-container"):
|
70 |
+
gr.HTML("<h1><center>Image Model Testing</center></h1><p><center>RayFlux V1 Model.</center></p>")
|
71 |
|
72 |
with gr.Row():
|
73 |
+
|
74 |
prompt = gr.Text(
|
75 |
label="Prompt",
|
76 |
show_label=False,
|
|
|
78 |
placeholder="Enter your prompt",
|
79 |
container=False,
|
80 |
)
|
81 |
+
|
82 |
run_button = gr.Button("Run", scale=0)
|
83 |
|
84 |
+
result = gr.Gallery(label="Gallery", format="png", columns = 1, preview=True, height=400)
|
85 |
|
86 |
with gr.Accordion("Advanced Settings", open=False):
|
87 |
+
|
88 |
with gr.Row():
|
89 |
+
|
90 |
width = gr.Slider(
|
91 |
label="Width",
|
92 |
minimum=256,
|
|
|
94 |
step=32,
|
95 |
value=1024,
|
96 |
)
|
97 |
+
|
98 |
height = gr.Slider(
|
99 |
label="Height",
|
100 |
minimum=256,
|
|
|
104 |
)
|
105 |
|
106 |
with gr.Row():
|
107 |
+
|
108 |
num_inference_steps = gr.Slider(
|
109 |
label="Number of inference steps",
|
110 |
minimum=1,
|
|
|
112 |
step=1,
|
113 |
value=30,
|
114 |
)
|
115 |
+
|
116 |
guidance_scale = gr.Slider(
|
117 |
label="Guidance Scale",
|
118 |
minimum=0,
|
|
|
121 |
value=3.5,
|
122 |
)
|
123 |
|
124 |
+
|
125 |
with gr.Row():
|
126 |
+
|
127 |
nums = gr.Slider(
|
128 |
label="Number of Images",
|
129 |
minimum=1,
|
|
|
132 |
value=1,
|
133 |
scale=1,
|
134 |
)
|
135 |
+
|
136 |
seed = gr.Slider(
|
137 |
label="Seed",
|
138 |
minimum=0,
|
|
|
140 |
step=1,
|
141 |
value=-1,
|
142 |
)
|
143 |
+
|
144 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
145 |
|
146 |
gr.on(
|
147 |
triggers=[run_button.click, prompt.submit],
|
148 |
+
fn = infer,
|
149 |
+
inputs = [prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
|
150 |
+
outputs = [result, seed]
|
151 |
)
|
152 |
+
|
153 |
demo.launch()
|