Upload 3 files
Browse files- Dockerfile +19 -0
- main.py +55 -0
- requirements.txt +5 -0
Dockerfile
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install dependencies
|
6 |
+
COPY requirements.txt .
|
7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
+
|
9 |
+
# Create cache directory with proper permissions
|
10 |
+
RUN mkdir -p /app/model_cache && chmod 777 /app/model_cache
|
11 |
+
|
12 |
+
# Copy application code
|
13 |
+
COPY . .
|
14 |
+
|
15 |
+
# Expose the port your FastAPI app will run on
|
16 |
+
EXPOSE 7860
|
17 |
+
|
18 |
+
# Command to run the application
|
19 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Simple implementation for translation using the BART model
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Define request model
|
9 |
+
class TranslationRequest(BaseModel):
|
10 |
+
text: str
|
11 |
+
max_length: int = 150
|
12 |
+
min_length: int = 40
|
13 |
+
|
14 |
+
# Download and cache the model during initialization
|
15 |
+
# This happens only once when the app starts
|
16 |
+
try:
|
17 |
+
# Explicitly download to a specific directory with proper error handling
|
18 |
+
cache_dir = "./model_cache"
|
19 |
+
model_name = "facebook/bart-large-cnn"
|
20 |
+
|
21 |
+
print(f"Loading tokenizer from {model_name}...")
|
22 |
+
tokenizer = BartTokenizer.from_pretrained(model_name, cache_dir=cache_dir, local_files_only=False)
|
23 |
+
|
24 |
+
print(f"Loading model from {model_name}...")
|
25 |
+
model = BartForConditionalGeneration.from_pretrained(model_name, cache_dir=cache_dir, local_files_only=False)
|
26 |
+
|
27 |
+
print("Model and tokenizer loaded successfully!")
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error loading model: {str(e)}")
|
30 |
+
raise
|
31 |
+
|
32 |
+
@app.post("/summarize/")
|
33 |
+
async def translate_text(request: TranslationRequest):
|
34 |
+
# Process the input text
|
35 |
+
inputs = tokenizer(request.text, return_tensors="pt", max_length=1024, truncation=True)
|
36 |
+
|
37 |
+
# Generate summary
|
38 |
+
summary_ids = model.generate(
|
39 |
+
inputs["input_ids"],
|
40 |
+
max_length=request.max_length,
|
41 |
+
min_length=request.min_length,
|
42 |
+
num_beams=4,
|
43 |
+
length_penalty=2.0,
|
44 |
+
early_stopping=True
|
45 |
+
)
|
46 |
+
|
47 |
+
# Decode the generated summary
|
48 |
+
translation = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
49 |
+
|
50 |
+
return {"summary": translation}
|
51 |
+
|
52 |
+
# Basic health check endpoint
|
53 |
+
@app.get("/health")
|
54 |
+
async def health_check():
|
55 |
+
return {"status": "healthy", "model": "facebook/bart-large-cnn"}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi>=0.95.0
|
2 |
+
uvicorn>=0.21.1
|
3 |
+
transformers>=4.27.0
|
4 |
+
torch>=2.0.0
|
5 |
+
pydantic>=1.10.7
|