Spaces:
Running
Running
Update app.py (#18)
Browse files- Update app.py (520692dd61a5947d0838a926d2856581f3b3c5bc)
Co-authored-by: Yushen CHEN <[email protected]>
app.py
CHANGED
|
@@ -8,7 +8,7 @@ import tempfile
|
|
| 8 |
from einops import rearrange
|
| 9 |
from ema_pytorch import EMA
|
| 10 |
from vocos import Vocos
|
| 11 |
-
from pydub import AudioSegment
|
| 12 |
from model import CFM, UNetT, DiT, MMDiT
|
| 13 |
from cached_path import cached_path
|
| 14 |
from model.utils import (
|
|
@@ -19,6 +19,7 @@ from model.utils import (
|
|
| 19 |
from transformers import pipeline
|
| 20 |
import spaces
|
| 21 |
import librosa
|
|
|
|
| 22 |
from txtsplit import txtsplit
|
| 23 |
from detoxify import Detoxify
|
| 24 |
|
|
@@ -49,8 +50,8 @@ speed = 1.0
|
|
| 49 |
# fix_duration = 27 # None or float (duration in seconds)
|
| 50 |
fix_duration = None
|
| 51 |
|
| 52 |
-
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
| 53 |
-
checkpoint = torch.load(str(cached_path(f"hf://SWivid/
|
| 54 |
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
| 55 |
model = CFM(
|
| 56 |
transformer=model_cls(
|
|
@@ -73,14 +74,14 @@ def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
|
| 73 |
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 74 |
ema_model.copy_params_from_ema_to_model()
|
| 75 |
|
| 76 |
-
return
|
| 77 |
|
| 78 |
# load models
|
| 79 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 80 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
| 81 |
|
| 82 |
-
F5TTS_ema_model
|
| 83 |
-
E2TTS_ema_model
|
| 84 |
|
| 85 |
@spaces.GPU
|
| 86 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
|
@@ -91,6 +92,12 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 91 |
gr.Info("Converting audio...")
|
| 92 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 93 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# Convert to mono
|
| 95 |
aseg = aseg.set_channels(1)
|
| 96 |
audio_duration = len(aseg)
|
|
@@ -101,10 +108,8 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 101 |
ref_audio = f.name
|
| 102 |
if exp_name == "F5-TTS":
|
| 103 |
ema_model = F5TTS_ema_model
|
| 104 |
-
base_model = F5TTS_base_model
|
| 105 |
elif exp_name == "E2-TTS":
|
| 106 |
ema_model = E2TTS_ema_model
|
| 107 |
-
base_model = E2TTS_base_model
|
| 108 |
|
| 109 |
if not ref_text.strip():
|
| 110 |
gr.Info("No reference text provided, transcribing reference audio...")
|
|
@@ -119,6 +124,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 119 |
else:
|
| 120 |
gr.Info("Using custom reference text...")
|
| 121 |
audio, sr = torchaudio.load(ref_audio)
|
|
|
|
| 122 |
# Audio
|
| 123 |
if audio.shape[0] > 1:
|
| 124 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
@@ -130,7 +136,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 130 |
audio = resampler(audio)
|
| 131 |
audio = audio.to(device)
|
| 132 |
# Chunk
|
| 133 |
-
chunks = txtsplit(gen_text,
|
| 134 |
results = []
|
| 135 |
generated_mel_specs = []
|
| 136 |
for chunk in progress.tqdm(chunks):
|
|
@@ -144,14 +150,14 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 144 |
# duration = int(fix_duration * target_sample_rate / hop_length)
|
| 145 |
# else:
|
| 146 |
zh_pause_punc = r"。,、;:?!"
|
| 147 |
-
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
| 148 |
-
|
| 149 |
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
| 150 |
|
| 151 |
# inference
|
| 152 |
gr.Info(f"Generating audio using {exp_name}")
|
| 153 |
with torch.inference_mode():
|
| 154 |
-
generated, _ =
|
| 155 |
cond=audio,
|
| 156 |
text=final_text_list,
|
| 157 |
duration=duration,
|
|
@@ -174,12 +180,23 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 174 |
generated_wave = np.concatenate(results)
|
| 175 |
if remove_silence:
|
| 176 |
gr.Info("Removing audio silences... This may take a moment")
|
| 177 |
-
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
| 178 |
-
non_silent_wave = np.array([])
|
| 179 |
-
for interval in non_silent_intervals:
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
generated_wave = non_silent_wave
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
|
| 185 |
# spectogram
|
|
|
|
| 8 |
from einops import rearrange
|
| 9 |
from ema_pytorch import EMA
|
| 10 |
from vocos import Vocos
|
| 11 |
+
from pydub import AudioSegment, silence
|
| 12 |
from model import CFM, UNetT, DiT, MMDiT
|
| 13 |
from cached_path import cached_path
|
| 14 |
from model.utils import (
|
|
|
|
| 19 |
from transformers import pipeline
|
| 20 |
import spaces
|
| 21 |
import librosa
|
| 22 |
+
import soundfile as sf
|
| 23 |
from txtsplit import txtsplit
|
| 24 |
from detoxify import Detoxify
|
| 25 |
|
|
|
|
| 50 |
# fix_duration = 27 # None or float (duration in seconds)
|
| 51 |
fix_duration = None
|
| 52 |
|
| 53 |
+
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
|
| 54 |
+
checkpoint = torch.load(str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
|
| 55 |
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
| 56 |
model = CFM(
|
| 57 |
transformer=model_cls(
|
|
|
|
| 74 |
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 75 |
ema_model.copy_params_from_ema_to_model()
|
| 76 |
|
| 77 |
+
return model
|
| 78 |
|
| 79 |
# load models
|
| 80 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 81 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
| 82 |
|
| 83 |
+
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
| 84 |
+
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
|
| 85 |
|
| 86 |
@spaces.GPU
|
| 87 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
|
|
|
| 92 |
gr.Info("Converting audio...")
|
| 93 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 94 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
| 95 |
+
# remove long silence in reference audio
|
| 96 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
| 97 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
| 98 |
+
for non_silent_seg in non_silent_segs:
|
| 99 |
+
non_silent_wave += non_silent_seg
|
| 100 |
+
aseg = non_silent_wave
|
| 101 |
# Convert to mono
|
| 102 |
aseg = aseg.set_channels(1)
|
| 103 |
audio_duration = len(aseg)
|
|
|
|
| 108 |
ref_audio = f.name
|
| 109 |
if exp_name == "F5-TTS":
|
| 110 |
ema_model = F5TTS_ema_model
|
|
|
|
| 111 |
elif exp_name == "E2-TTS":
|
| 112 |
ema_model = E2TTS_ema_model
|
|
|
|
| 113 |
|
| 114 |
if not ref_text.strip():
|
| 115 |
gr.Info("No reference text provided, transcribing reference audio...")
|
|
|
|
| 124 |
else:
|
| 125 |
gr.Info("Using custom reference text...")
|
| 126 |
audio, sr = torchaudio.load(ref_audio)
|
| 127 |
+
max_chars = int(len(ref_text) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
|
| 128 |
# Audio
|
| 129 |
if audio.shape[0] > 1:
|
| 130 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
|
|
| 136 |
audio = resampler(audio)
|
| 137 |
audio = audio.to(device)
|
| 138 |
# Chunk
|
| 139 |
+
chunks = txtsplit(gen_text, 0.7*max_chars, 0.9*max_chars)
|
| 140 |
results = []
|
| 141 |
generated_mel_specs = []
|
| 142 |
for chunk in progress.tqdm(chunks):
|
|
|
|
| 150 |
# duration = int(fix_duration * target_sample_rate / hop_length)
|
| 151 |
# else:
|
| 152 |
zh_pause_punc = r"。,、;:?!"
|
| 153 |
+
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
| 154 |
+
chunk = len(chunk.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
| 155 |
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
| 156 |
|
| 157 |
# inference
|
| 158 |
gr.Info(f"Generating audio using {exp_name}")
|
| 159 |
with torch.inference_mode():
|
| 160 |
+
generated, _ = ema_model.sample(
|
| 161 |
cond=audio,
|
| 162 |
text=final_text_list,
|
| 163 |
duration=duration,
|
|
|
|
| 180 |
generated_wave = np.concatenate(results)
|
| 181 |
if remove_silence:
|
| 182 |
gr.Info("Removing audio silences... This may take a moment")
|
| 183 |
+
# non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
| 184 |
+
# non_silent_wave = np.array([])
|
| 185 |
+
# for interval in non_silent_intervals:
|
| 186 |
+
# start, end = interval
|
| 187 |
+
# non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
|
| 188 |
+
# generated_wave = non_silent_wave
|
| 189 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 190 |
+
sf.write(f.name, generated_wave, target_sample_rate)
|
| 191 |
+
aseg = AudioSegment.from_file(f.name)
|
| 192 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
| 193 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
| 194 |
+
for non_silent_seg in non_silent_segs:
|
| 195 |
+
non_silent_wave += non_silent_seg
|
| 196 |
+
aseg = non_silent_wave
|
| 197 |
+
aseg.export(f.name, format="wav")
|
| 198 |
+
generated_wave, _ = torchaudio.load(f.name)
|
| 199 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
| 200 |
|
| 201 |
|
| 202 |
# spectogram
|