File size: 3,279 Bytes
e3e52ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import numpy as np
import gradio as gr


def apply_gaussian_blur(frame, intensity):
    ksize = int(intensity) * 2 + 1
    return cv2.GaussianBlur(frame, (ksize, ksize), 0)

def apply_sharpening_filter(frame):
    kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
    return cv2.filter2D(frame, -1, kernel)

def apply_edge_detection(frame):
    return cv2.Canny(frame, 100, 200)

def apply_invert_filter(frame):
    return cv2.bitwise_not(frame)

def adjust_brightness_contrast(frame, alpha=1.0, beta=0):
    return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)

def apply_grayscale_filter(frame):
    return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

def apply_sepia_filter(frame):
    sepia_filter = np.array([[0.272, 0.534, 0.131],
                             [0.349, 0.686, 0.168],
                             [0.393, 0.769, 0.189]])
    sepia_frame = cv2.transform(frame, sepia_filter)
    sepia_frame = np.clip(sepia_frame, 0, 255)
    return sepia_frame

def apply_fall_filter(frame):
    fall_filter = np.array([[0.393, 0.769, 0.189],
                            [0.349, 0.686, 0.168],
                            [0.272, 0.534, 0.131]])
    fall_frame = cv2.transform(frame, fall_filter)
    fall_frame = np.clip(fall_frame, 0, 255)
    return fall_frame

def apply_filter(filter_types, input_image, blur_intensity=1, brightness=1.0, contrast=50):
    frame = input_image.copy()
   
    for filter_type in filter_types:
        if filter_type == "Gaussian Blur":
            frame = apply_gaussian_blur(frame, blur_intensity)
        elif filter_type == "Sharpen":
            frame = apply_sharpening_filter(frame)
        elif filter_type == "Edge Detection":
            frame = apply_edge_detection(frame)
        elif filter_type == "Invert":
            frame = apply_invert_filter(frame)
        elif filter_type == "Brightness/Contrast":
            frame = adjust_brightness_contrast(frame, alpha=brightness, beta=contrast)
        elif filter_type == "Grayscale":
            frame = apply_grayscale_filter(frame)
        elif filter_type == "Sepia":
            frame = apply_sepia_filter(frame)
        elif filter_type == "Sonbahar":
            frame = apply_fall_filter(frame)
    
    return frame


with gr.Blocks() as demo:
    gr.Markdown("# Gelişmiş Web Kameradan Canlı Filtreleme")

    
    filter_types = gr.CheckboxGroup(
        label="Filtre Seçin",
        choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness/Contrast", "Grayscale", "Sepia", "Sonbahar"],
        value=["Gaussian Blur"]
    )

    blur_intensity = gr.Slider(label="Gaussian Blur Yoğunluğu", minimum=1, maximum=10, step=1, value=1)
    brightness = gr.Slider(label="Parlaklık", minimum=0.5, maximum=2.0, step=0.1, value=1.0)
    contrast = gr.Slider(label="Kontrast", minimum=0, maximum=100, step=10, value=50)

    input_image = gr.Image(label="Resim Yükle", type="numpy")

    output_image = gr.Image(label="Filtre Uygulandı")

    apply_button = gr.Button("Filtreyi Uygula")

    apply_button.click(fn=apply_filter, inputs=[filter_types, input_image, blur_intensity, brightness, contrast], outputs=output_image)


demo.launch()