Spaces:
Running
Running
latest update of app.py, newer version of langchain package in requirements.txt, and tesla_db Vector database with 448 embedding dimensions and overlap of 24
Browse files- app.py +142 -39
- requirements.txt +6 -3
- tesla_db/chroma.sqlite3 +2 -2
- tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/data_level0.bin +3 -0
- tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/header.bin +3 -0
- tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/index_metadata.pickle +3 -0
- tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/length.bin +3 -0
- tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/link_lists.bin +3 -0
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import uuid
|
3 |
import json
|
|
|
|
|
|
|
|
|
4 |
from pathlib import Path
|
5 |
|
6 |
-
# ATTENTION: some versions in the requirements.txt file are more current than the ones used in the notebook
|
7 |
-
|
8 |
# GUI components
|
9 |
import gradio as gr
|
10 |
|
@@ -14,6 +21,7 @@ import gradio as gr
|
|
14 |
from openai import OpenAI, OpenAIError
|
15 |
|
16 |
# Embedding operations & Vector DB creation
|
|
|
17 |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
18 |
from langchain_community.vectorstores import Chroma
|
19 |
|
@@ -23,13 +31,17 @@ from huggingface_hub import CommitScheduler
|
|
23 |
# Set working directory (HuggingFace space)
|
24 |
hf_space_dir = os.getcwd()
|
25 |
|
|
|
|
|
|
|
|
|
26 |
# Anyscale model hosting platform NOT USED in this notebook. Open AI model hosting platform used instead.
|
27 |
# client = OpenAI(
|
28 |
# base_url="https://api.endpoints.anyscale.com/v1",
|
29 |
# api_key=os.environ['ANYSCALE_API_KEY']
|
30 |
# )
|
31 |
|
32 |
-
|
33 |
# OpenAI API key stored as a "secret" HuggingFace Space
|
34 |
# OPENAI_API_KEY
|
35 |
|
@@ -63,8 +75,11 @@ client = OpenAI(
|
|
63 |
# api_key=os.environ.get("OPENAI_API_KEY"),
|
64 |
api_key=openai_api_key,
|
65 |
)
|
66 |
-
#---------------------------------------------------------------------
|
67 |
|
|
|
|
|
|
|
|
|
68 |
# embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
|
69 |
# The gte-small model from OpenAI's family of models, which includes the GTE models designed for retrieval tasks, uses a specific number of embedding dimensions. The gte-small model has 384 embedding dimensions.
|
70 |
# This dimensionality allows the model to capture semantic information effectively while maintaining a relatively small model size for efficiency in retrieval tasks.
|
@@ -77,27 +92,46 @@ embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
|
77 |
tesla_10k_collection = 'tesla-10k-2019-to-2023'
|
78 |
|
79 |
# Example: Creating a collection with the correct dimensionality
|
80 |
-
# tesla_10k_collection = Chroma.create_collection("tesla-10k-2019-to-2023", embedding_dim=
|
|
|
81 |
|
|
|
82 |
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# vector database constructor Chroma()
|
85 |
vectorstore_persisted = Chroma(
|
86 |
-
collection_name=tesla_10k_collection,
|
87 |
-
persist_directory='./tesla_db',
|
88 |
-
embedding_function=embedding_model
|
89 |
)
|
90 |
|
|
|
91 |
retriever = vectorstore_persisted.as_retriever(
|
92 |
-
search_type='similarity',
|
93 |
-
search_kwargs={'k': 5}
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
# Prepare the logging functionality
|
97 |
|
|
|
98 |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
99 |
log_folder = log_file.parent
|
|
|
|
|
100 |
|
|
|
101 |
scheduler = CommitScheduler(
|
102 |
repo_id="document-qna-chroma-openai-logs", # name of the log folder containing json elements --> HuggingFace dataset # OLD name: "document-qna-chroma-anyscale-logs",
|
103 |
repo_type="dataset",
|
@@ -106,60 +140,115 @@ scheduler = CommitScheduler(
|
|
106 |
every=2 # execute every two API calls
|
107 |
)
|
108 |
|
|
|
|
|
|
|
109 |
qna_system_message = """
|
110 |
You are an assistant to a financial services firm who answers user queries on annual reports.
|
111 |
-
Users will ask questions delimited by triple backticks, that is, ```.
|
112 |
User input will have the context required by you to answer user questions.
|
113 |
This context will begin with the token: ###Context.
|
114 |
The context contains references to specific portions of a document relevant to the user query.
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
If the answer is not found in the context, respond "I don't know".
|
117 |
"""
|
118 |
|
|
|
119 |
qna_user_message_template = """
|
120 |
###Context
|
121 |
-
Here are some documents that are relevant to the question.
|
122 |
{context}
|
|
|
|
|
123 |
```
|
124 |
{question}
|
125 |
```
|
126 |
"""
|
127 |
|
128 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def predict(user_input):
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
prompt = [
|
137 |
{'role':'system', 'content': qna_system_message},
|
138 |
-
{'role':'user', 'content': qna_user_message_template.format(
|
139 |
-
context=context_for_query,
|
140 |
-
question=user_input
|
141 |
)
|
142 |
}
|
143 |
]
|
144 |
|
145 |
try:
|
146 |
response = client.chat.completions.create(
|
147 |
-
model=model_name,
|
148 |
messages=prompt,
|
149 |
-
temperature=0,
|
150 |
-
# max_tokens=
|
151 |
)
|
152 |
-
|
153 |
prediction = response.choices[0].message.content.strip() # Access response attributes directly
|
154 |
-
|
|
|
|
|
155 |
except Exception as e:
|
156 |
-
prediction = e
|
|
|
157 |
|
158 |
# While the prediction is made, log both the inputs and outputs to a local log file (i.e., HuggingFace dataset)
|
159 |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
160 |
-
# access (i.e., put a lock on the state of the log_file in case
|
|
|
|
|
161 |
# Note: the log_file is a json file.
|
162 |
-
|
163 |
with scheduler.lock:
|
164 |
with log_file.open("a") as f:
|
165 |
# json.dumps turns the dictionary into a json string containing 'user_input', 'context_for_query', and 'prediction'
|
@@ -171,19 +260,31 @@ def predict(user_input):
|
|
171 |
}
|
172 |
))
|
173 |
f.write("\n") # write a new line to prepare for the next observation to be logged
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
176 |
|
177 |
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
# Create the interface
|
181 |
demo = gr.Interface(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
187 |
)
|
188 |
|
189 |
|
@@ -200,5 +301,7 @@ demo = gr.Interface(
|
|
200 |
# concurrency_limit=16
|
201 |
# )
|
202 |
|
|
|
203 |
demo.queue()
|
204 |
-
demo.launch()
|
|
|
|
1 |
+
# +++
|
2 |
+
# Import the libraries
|
3 |
+
#---------------------------------------------------------------------------------------------------------
|
4 |
+
# Import libraries for issuing OS commands. In addition to the built-in format using the '!' scape character prefix
|
5 |
import os
|
6 |
+
# Tokenizing and data formatting
|
7 |
import uuid
|
8 |
import json
|
9 |
+
# Data management
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
# For File path operations
|
13 |
from pathlib import Path
|
14 |
|
|
|
|
|
15 |
# GUI components
|
16 |
import gradio as gr
|
17 |
|
|
|
21 |
from openai import OpenAI, OpenAIError
|
22 |
|
23 |
# Embedding operations & Vector DB creation
|
24 |
+
# from langchain_core.documents import Document
|
25 |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
26 |
from langchain_community.vectorstores import Chroma
|
27 |
|
|
|
31 |
# Set working directory (HuggingFace space)
|
32 |
hf_space_dir = os.getcwd()
|
33 |
|
34 |
+
# Obtain current directory and data file path
|
35 |
+
hf_space_app_dir_path = Path.cwd()
|
36 |
+
print(f"HuggingFace Space application directory: {hf_space_app_dir_path}\n")
|
37 |
+
|
38 |
# Anyscale model hosting platform NOT USED in this notebook. Open AI model hosting platform used instead.
|
39 |
# client = OpenAI(
|
40 |
# base_url="https://api.endpoints.anyscale.com/v1",
|
41 |
# api_key=os.environ['ANYSCALE_API_KEY']
|
42 |
# )
|
43 |
|
44 |
+
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
45 |
# OpenAI API key stored as a "secret" HuggingFace Space
|
46 |
# OPENAI_API_KEY
|
47 |
|
|
|
75 |
# api_key=os.environ.get("OPENAI_API_KEY"),
|
76 |
api_key=openai_api_key,
|
77 |
)
|
|
|
78 |
|
79 |
+
print(f"OpenAI client created and authenticated with API key.\nUsing OpenAI model: {model_name}\n")
|
80 |
+
#-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
81 |
+
|
82 |
+
print(f"Loading Vector DB from HuggingFace Space file space...\n")
|
83 |
# embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
|
84 |
# The gte-small model from OpenAI's family of models, which includes the GTE models designed for retrieval tasks, uses a specific number of embedding dimensions. The gte-small model has 384 embedding dimensions.
|
85 |
# This dimensionality allows the model to capture semantic information effectively while maintaining a relatively small model size for efficiency in retrieval tasks.
|
|
|
92 |
tesla_10k_collection = 'tesla-10k-2019-to-2023'
|
93 |
|
94 |
# Example: Creating a collection with the correct dimensionality
|
95 |
+
# tesla_10k_collection = Chroma.create_collection("tesla-10k-2019-to-2023", embedding_dim=1024)
|
96 |
+
|
97 |
|
98 |
+
persisted_vectordb_path = Path.joinpath(hf_space_app_dir_path, 'tesla_db') # this is a pathlib object
|
99 |
|
100 |
+
# persisted_vectordb_location = persisted_vectordb_path # this is a pathlib object ... this produces error in the Chroma parameter "persist_directory", as it is expecting a string object, and not a pathlib object.
|
101 |
+
persisted_vectordb_location = str(persisted_vectordb_path) # convert path to string
|
102 |
+
|
103 |
+
print(f"Vector database location:\n{persisted_vectordb_location}\n")
|
104 |
|
105 |
# vector database constructor Chroma()
|
106 |
vectorstore_persisted = Chroma(
|
107 |
+
collection_name = tesla_10k_collection,
|
108 |
+
persist_directory = persisted_vectordb_location # './tesla_db',
|
109 |
+
embedding_function = embedding_model
|
110 |
)
|
111 |
|
112 |
+
# Return VectorStoreRetriever initialized from this VectorStore.
|
113 |
retriever = vectorstore_persisted.as_retriever(
|
114 |
+
search_type = 'similarity',
|
115 |
+
search_kwargs = {'k': 5}
|
116 |
)
|
117 |
+
# Args:
|
118 |
+
# search_type (Optional[str]): Defines the type of search that the Retriever should perform.
|
119 |
+
# Can be "similarity" (default), "mmr", or "similarity_score_threshold".
|
120 |
+
# search_kwargs (Optional[Dict]): Keyword arguments to pass to the
|
121 |
+
# search function. Can include things like:
|
122 |
+
# k: Amount of documents to return (Default: 4)
|
123 |
+
# score_threshold: Minimum relevance threshold for similarity_score_threshold
|
124 |
+
|
125 |
+
print(f"Successfully obtained VectorStoreRetriever initialized from the Vector database.\n")
|
126 |
|
|
|
127 |
|
128 |
+
# Prepare the logging functionality
|
129 |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
130 |
log_folder = log_file.parent
|
131 |
+
print(f"\nLogging dataset information:\n\tlog_file: {log_file}\n\tlog_folder: {log_folder}\n")
|
132 |
+
|
133 |
|
134 |
+
# Scheduler will log every 2 API calls:
|
135 |
scheduler = CommitScheduler(
|
136 |
repo_id="document-qna-chroma-openai-logs", # name of the log folder containing json elements --> HuggingFace dataset # OLD name: "document-qna-chroma-anyscale-logs",
|
137 |
repo_type="dataset",
|
|
|
140 |
every=2 # execute every two API calls
|
141 |
)
|
142 |
|
143 |
+
print(f"Retrieval Augmented Generation (RAG) Q&A\nLLM Prompt initialization... (System prompt and user_input template)\n")
|
144 |
+
|
145 |
+
# LLM System Prompt
|
146 |
qna_system_message = """
|
147 |
You are an assistant to a financial services firm who answers user queries on annual reports.
|
|
|
148 |
User input will have the context required by you to answer user questions.
|
149 |
This context will begin with the token: ###Context.
|
150 |
The context contains references to specific portions of a document relevant to the user query.
|
151 |
+
|
152 |
+
User questions will begin with the token: ###Question, and the question text will be delimited by triple backticks, that is, ```.
|
153 |
+
|
154 |
+
Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.
|
155 |
+
|
156 |
If the answer is not found in the context, respond "I don't know".
|
157 |
"""
|
158 |
|
159 |
+
# LLM user_input template
|
160 |
qna_user_message_template = """
|
161 |
###Context
|
162 |
+
Here are some documents that are relevant to the question mentioned below.
|
163 |
{context}
|
164 |
+
|
165 |
+
###Question
|
166 |
```
|
167 |
{question}
|
168 |
```
|
169 |
"""
|
170 |
|
171 |
+
# ANOTHER VERSION:
|
172 |
+
# # LLM System Prompt
|
173 |
+
# qna_system_message = """
|
174 |
+
# You are an assistant to a financial services firm who answers user queries on annual reports.
|
175 |
+
# Users will ask questions delimited by triple backticks, that is, ```.
|
176 |
+
# User input will have the context required by you to answer user questions.
|
177 |
+
# This context will begin with the token: ###Context.
|
178 |
+
# The context contains references to specific portions of a document relevant to the user query.
|
179 |
+
# Please answer only using the context provided in the input. However, do not mention anything about the context in your answer.
|
180 |
+
# If the answer is not found in the context, respond "I don't know".
|
181 |
+
# """
|
182 |
+
|
183 |
+
# # LLM user_input template
|
184 |
+
# qna_user_message_template = """
|
185 |
+
# ###Context
|
186 |
+
# Here are some documents that are relevant to the question.
|
187 |
+
# {context}
|
188 |
+
# ```
|
189 |
+
# {question}
|
190 |
+
# ```
|
191 |
+
# """
|
192 |
+
|
193 |
+
# Define the "predict function" which will take the user_input, obtain the relevant context to answer the user question more accurately, and pass
|
194 |
+
# both to the OpenAI client to make predictions using the OpenAI LLM model
|
195 |
+
# The function runs when 'Submit' is clicked or when a API request is made
|
196 |
+
#-------------------------------------------------------------------------------------------------------------------------------------------------------------
|
197 |
def predict(user_input):
|
198 |
|
199 |
+
# COMPOSING THE RESPONSE
|
200 |
+
|
201 |
+
# Retrieving relevant documents
|
202 |
+
relevant_document_chunks = retriever.get_relevant_documents(query = user_input) # relevant_document_chunks = retriever.invoke(user_input)
|
203 |
+
print(f"Relevant document chunks = {len(relevant_document_chunks)}")
|
204 |
+
print(f"RELEVANT DOCUMENT CHUNKS TO BE USED AS CONTEXT TO ANSWER THE USER QUESTION:\n")
|
205 |
+
print("-"*80)
|
206 |
+
i = 0
|
207 |
+
for document in relevant_document_chunks:
|
208 |
+
print(f"\nDocument chunk {i+1}:")
|
209 |
+
i += 1
|
210 |
+
print(f"Metadata:\nSource: {document.metadata['source']}\nPage: {document.metadata['page']}\n")
|
211 |
+
print(f"Page content:\n-------------")
|
212 |
+
print(document.page_content.replace('\t', ' ')) # replace all tabs used as separators by default with a single space
|
213 |
+
print("-"*80)
|
214 |
|
215 |
+
context_list = [doc_chunk.page_content for doc_chunk in relevant_document_chunks] # doc_chunk.page_content.replace('\t', ' ') # replace all tabs used as separators by default with a single space
|
216 |
+
|
217 |
+
context_for_query = ". ".join(context_list)
|
218 |
+
# (method)
|
219 |
+
# join(__iterable: Iterable[LiteralString], /) -> LiteralString
|
220 |
+
# join(__iterable: Iterable[str], /) -> str
|
221 |
+
|
222 |
prompt = [
|
223 |
{'role':'system', 'content': qna_system_message},
|
224 |
+
{'role': 'user', 'content': qna_user_message_template.format(
|
225 |
+
context = context_for_query,
|
226 |
+
question = user_input
|
227 |
)
|
228 |
}
|
229 |
]
|
230 |
|
231 |
try:
|
232 |
response = client.chat.completions.create(
|
233 |
+
model=model_name, # previous model used: 'mlabonne/NeuralHermes-2.5-Mistral-7B',
|
234 |
messages=prompt,
|
235 |
+
temperature=0, # Temperature > 0 to encourage creative answer... Temperature = 0.7: A common setting that provides a balance between creativity and coherence.
|
236 |
+
# max_tokens=400 # Limit the number of tokens in the response
|
237 |
)
|
|
|
238 |
prediction = response.choices[0].message.content.strip() # Access response attributes directly
|
239 |
+
# Handle API errors
|
240 |
+
except openai.OpenAIError as e:
|
241 |
+
prediction = f'Sorry, I encountered the following OpenAI error: \n {e}'
|
242 |
except Exception as e:
|
243 |
+
prediction = f'Sorry, I encountered the following error: \n {e}'
|
244 |
+
|
245 |
|
246 |
# While the prediction is made, log both the inputs and outputs to a local log file (i.e., HuggingFace dataset)
|
247 |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
248 |
+
# access (i.e., put a lock on the state of the log_file in case users are entering queries while the log operation is in progress.)
|
249 |
+
# Write user_input, context and prediction to a HuggingFace dataset repo for logging
|
250 |
+
# Each time we get a prediction we will determine if we should log it to a hugging_face dataset according to the scheduler definition outside this function
|
251 |
# Note: the log_file is a json file.
|
|
|
252 |
with scheduler.lock:
|
253 |
with log_file.open("a") as f:
|
254 |
# json.dumps turns the dictionary into a json string containing 'user_input', 'context_for_query', and 'prediction'
|
|
|
260 |
}
|
261 |
))
|
262 |
f.write("\n") # write a new line to prepare for the next observation to be logged
|
263 |
+
|
264 |
+
prediction_result = prediction
|
265 |
+
print(f"\nPrediction result: {prediction_result} - {type(prediction_result)}\n")
|
266 |
+
|
267 |
+
return (prediction_result)
|
268 |
+
#-------------------------------------------------------------------------------------------------------------------------------------------------------------
|
269 |
|
270 |
|
271 |
+
# Set up UI components for input and output
|
272 |
+
# Input components
|
273 |
+
user_question_textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
|
274 |
+
# Output components
|
275 |
+
model_prediction = gr.Label(label="Model prediction")
|
276 |
+
# model_prediction = "text"
|
277 |
|
278 |
# Create the interface
|
279 |
demo = gr.Interface(
|
280 |
+
fn = predict,
|
281 |
+
inputs = user_question_textbox,
|
282 |
+
outputs = model_prediction # "text",
|
283 |
+
title = "Ask Me Anything (AMA) on Tesla 10-K statements",
|
284 |
+
description= " This web API presents an interface to ask questions about the contents of the Tesla 10-K reports for the period 2019 - 2023.",
|
285 |
+
article = "Note that questions that are not relevant to the Tesla 10-K report will not be answered.",
|
286 |
+
allow_flagging="auto", # automatically push to the HuggingFace Dataset
|
287 |
+
concurrency_limit = 16
|
288 |
)
|
289 |
|
290 |
|
|
|
301 |
# concurrency_limit=16
|
302 |
# )
|
303 |
|
304 |
+
# Launch container hosted by HuggingFace with a load balancer
|
305 |
demo.queue()
|
306 |
+
demo.launch(share=False)
|
307 |
+
# To create a public link, set "share=True" in launch() .... but if I execute this app.py locally, then I have to have my computer on for the public users to access the browser interface
|
requirements.txt
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
openai==1.23.2
|
2 |
chromadb==0.4.22
|
3 |
-
langchain==0.1.
|
4 |
-
langchain-community==0.0.
|
5 |
-
sentence-transformers==2.3.1
|
|
|
|
|
|
|
|
1 |
openai==1.23.2
|
2 |
chromadb==0.4.22
|
3 |
+
langchain==0.1.9
|
4 |
+
langchain-community==0.0.32
|
5 |
+
sentence-transformers==2.3.1
|
6 |
+
pathlib==1.0.1
|
7 |
+
pandas==2.1.4
|
8 |
+
numpy==1.26.4
|
tesla_db/chroma.sqlite3
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16fbd2946c0267a17248a40998bc5a3446a65dee1b8b5b356b6018da86cabbf0
|
3 |
+
size 47091712
|
tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:250d230dee83b006de1787c35948d598ddcffe236f81eafabbe31805e7469749
|
3 |
+
size 12708000
|
tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e07096989a6d97db01f79643d6aa43690488b6a066eb20e594135825e0e34a70
|
3 |
+
size 100
|
tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbc8823be5a3c3b78663ff93c9d05602df74d072b371471e88126f8df52eaabd
|
3 |
+
size 172004
|
tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe6a12fdf9e9d1787634155c2f404ffea281dfd121ddd597deb71e17317f2576
|
3 |
+
size 12000
|
tesla_db/e8d4536e-a48d-4048-ad1d-9aaa0bb6ec69/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6322a3a45d75cc9f31cc0eafac6458a325d4c8e51525be50cc57030505294c41
|
3 |
+
size 25736
|