Spaces:
Sleeping
Sleeping
IamHussain
commited on
Commit
·
307771a
1
Parent(s):
26cd2c3
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
import random
|
5 |
+
|
6 |
+
# In-memory storage for validator submissions
|
7 |
+
submitted_scores = []
|
8 |
+
|
9 |
+
# Function to submit score
|
10 |
+
def submit_score(validator_id, miner_id, score, model_type, timestamp):
|
11 |
+
submitted_scores.append({
|
12 |
+
"validator_id": validator_id,
|
13 |
+
"miner_id": miner_id,
|
14 |
+
"score": score,
|
15 |
+
"model_type": model_type,
|
16 |
+
"timestamp": timestamp
|
17 |
+
})
|
18 |
+
|
19 |
+
# Function to calculate the average score for each miner
|
20 |
+
def calculate_top_miners():
|
21 |
+
miner_scores = {}
|
22 |
+
for entry in submitted_scores:
|
23 |
+
miner_id = entry["miner_id"]
|
24 |
+
score = entry["score"]
|
25 |
+
|
26 |
+
if miner_id not in miner_scores:
|
27 |
+
miner_scores[miner_id] = {"SNR": 0, "HNR": 0, "CLAP": 0, "count": 0}
|
28 |
+
|
29 |
+
miner_scores[miner_id]["SNR"] += score["SNR"]
|
30 |
+
miner_scores[miner_id]["HNR"] += score["HNR"]
|
31 |
+
miner_scores[miner_id]["CLAP"] += score["CLAP"]
|
32 |
+
miner_scores[miner_id]["count"] += 1
|
33 |
+
|
34 |
+
# Calculate average score
|
35 |
+
for miner_id, scores in miner_scores.items():
|
36 |
+
scores["SNR"] /= scores["count"]
|
37 |
+
scores["HNR"] /= scores["count"]
|
38 |
+
scores["CLAP"] /= scores["count"]
|
39 |
+
|
40 |
+
# Sort by total score (sum of SNR, HNR, CLAP)
|
41 |
+
sorted_miners = sorted(miner_scores.items(), key=lambda x: (x[1]["SNR"] + x[1]["HNR"] + x[1]["CLAP"]), reverse=True)
|
42 |
+
|
43 |
+
return sorted_miners[:10] # Return top 10 miners
|
44 |
+
|
45 |
+
# Streamlit UI
|
46 |
+
st.title("Top 10 Miner Scores")
|
47 |
+
|
48 |
+
# Display top 10 miners
|
49 |
+
if st.button("Display Top 10 Scores"):
|
50 |
+
top_miners = calculate_top_miners()
|
51 |
+
st.write("Top 10 Miners based on aggregated scores:")
|
52 |
+
|
53 |
+
# Prepare data for the table
|
54 |
+
miner_data = []
|
55 |
+
for miner, scores in top_miners:
|
56 |
+
miner_data.append([miner, scores["SNR"], scores["HNR"], scores["CLAP"]])
|
57 |
+
|
58 |
+
df = pd.DataFrame(miner_data, columns=["Miner ID", "SNR", "HNR", "CLAP"])
|
59 |
+
st.table(df)
|