File size: 8,136 Bytes
b097fc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src_maia.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "number", True, never_hidden=True)])
auto_eval_column_dict.append(["size_symbol", ColumnContent, ColumnContent("Size", "number", True, never_hidden=True)])
auto_eval_column_dict.append(["fewshot_symbol", ColumnContent, ColumnContent("FS", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["is_5fewshot", ColumnContent, ColumnContent("IS_FS", "bool", True)])
auto_eval_column_dict.append(["mode_symbol", ColumnContent, ColumnContent("Mode", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["is_multimodal", ColumnContent, ColumnContent("IS_MULTIMODAL", "bool", True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg. Comb. Perf. β¬οΈ", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
#auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
#auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
#auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
#auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
#auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
#auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
#auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
#auto_eval_column_dict.append(["submitted_time", ColumnContent, ColumnContent("Submitted time", "date", False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
#revision = ColumnContent("revision", "str", True)
#private = ColumnContent("private", "bool", True)
#precision = ColumnContent("precision", "str", True)
#weight_type = ColumnContent("weight_type", "str", "Original")
#status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="π’")
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
IFT = ModelDetails(name="instruction-tuned", symbol="β")
RL = ModelDetails(name="RL-tuned", symbol="π¦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πΆ" in type:
return ModelType.FT
if "pretrained" in type or "π’" in type:
return ModelType.PT
if "RL-tuned" in type or "π¦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β" in type:
return ModelType.IFT
return ModelType.Unknown
@dataclass
class FewShotDetails:
name: str
symbol: str = "" # emoji
class FewShotType(Enum):
ZS = FewShotDetails(name="zero-shot", symbol="π
ΎοΈ")
FS = FewShotDetails(name="5-few-shot", symbol="5οΈβ£")
Unknown = FewShotDetails(name="unknown", symbol="β")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_num_fewshot(is_5fewshot):
"""Determines FewShotType based on num_fewshot."""
if is_5fewshot is False:
return FewShotType.ZS
elif is_5fewshot is True:
return FewShotType.FS
return FewShotType.Unknown
@dataclass
class ModeDetails:
name: str
symbol: str = "" # emoji
class ModeType(Enum):
TEXT = ModeDetails(name="TextOnly", symbol="π€")
MULTIMODAL = ModeDetails(name="Multimodal", symbol="π€πΌοΈ")
Unknown = ModeDetails(name="unknown", symbol="β")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_num_mode(is_multimodal):
"""Determines FewShotType based on num_fewshot."""
if is_multimodal is False:
return ModeType.TEXT
elif is_multimodal is True:
return ModeType.MULTIMODAL
return ModeType.Unknown
@dataclass
class SizeDetails:
name: str
symbol: str = "" # emoji
class SizeType(Enum):
SMALL = SizeDetails(name="small", symbol="π΅")
MEDIUM = SizeDetails(name="medium", symbol="π΅π΅")
LARGE = SizeDetails(name="large", symbol="π΅π΅π΅")
Unknown = SizeDetails(name="unknown", symbol="β")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def num2type(size):
"""Determines FewShotType based on num_fewshot."""
if size <= 10:
return SizeType.SMALL
elif size > 10 and size <= 50:
return SizeType.MEDIUM
else:
return SizeType.LARGE
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
'''
# Nuovi valori per CPS, AVERAGE, BEST, e ID nella tabella
@dataclass
class NewColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
'''
'''
new_column_dict = []
# Aggiungi CPS, VERAGE, BEST, ID
new_column_dict.append(["CPS", NewColumnContent, NewColumnContent("CPS", "number", True)])
new_column_dict.append(["AVERAGE", NewColumnContent, NewColumnContent("Average β¬οΈ", "number", True)])
new_column_dict.append(["BEST", NewColumnContent, NewColumnContent("Best Performance", "number", True)])
new_column_dict.append(["ID", NewColumnContent, NewColumnContent("ID", "str", True)])
NewColumn = make_dataclass("NewColumn", new_column_dict, frozen=True)
NEW_COLS = [c.name for c in fields(NewColumn) if not c.hidden]
'''
|