Add performance metrics labels with average, std dev, and best model info.
Browse files- app.py +94 -44
- app_22_09_2025.py +625 -0
app.py
CHANGED
@@ -490,69 +490,117 @@ if LEADERBOARD_DF is None:
|
|
490 |
theoretical_max_combined_perf = 0.0
|
491 |
|
492 |
|
|
|
493 |
def create_gradio_interface():
|
494 |
"""The main Gradio interface."""
|
495 |
demo = gr.Blocks(css=custom_css)
|
496 |
|
497 |
with demo:
|
498 |
-
#
|
499 |
gr.HTML(create_title_html())
|
500 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
501 |
|
502 |
-
#
|
503 |
-
with gr.Row():
|
504 |
-
if LEADERBOARD_DF is not None:
|
505 |
-
# Note: You'd need to implement these chart functions properly
|
506 |
-
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
507 |
-
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
|
508 |
-
|
509 |
-
# Tabs
|
510 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
511 |
-
#
|
512 |
with gr.TabItem("🏅 Benchmark"):
|
513 |
if LEADERBOARD_DF is not None:
|
514 |
-
|
515 |
-
LEADERBOARD_DF,
|
516 |
-
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT",
|
517 |
-
"WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
518 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
519 |
-
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA",
|
520 |
-
"HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
521 |
-
)
|
522 |
|
523 |
-
gr.
|
524 |
-
|
|
|
525 |
<div style="
|
526 |
-
|
527 |
-
border-radius: 10px;
|
528 |
-
padding: 10px;
|
529 |
-
background-color: #f0f8ff;
|
530 |
-
font-weight: bold;
|
531 |
-
font-size: 14px;
|
532 |
-
display: inline-block;
|
533 |
">
|
534 |
-
|
535 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
</div>
|
537 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
)
|
539 |
|
540 |
-
# About
|
541 |
with gr.TabItem("📝 About"):
|
542 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
543 |
|
|
|
544 |
with gr.TabItem("║", interactive=False):
|
545 |
gr.Markdown("", elem_classes="markdown-text")
|
546 |
|
547 |
-
# Task-specific tabs
|
548 |
if LEADERBOARD_DF is not None:
|
549 |
-
# Multiple choice tasks
|
550 |
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
551 |
with gr.TabItem(f"{metadata['icon']}{task}"):
|
552 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
553 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
554 |
|
555 |
-
|
556 |
LEADERBOARD_DF.rename(columns={
|
557 |
f"{task} Prompt Average": "Prompt Average",
|
558 |
f"{task} Prompt Std": "Prompt Std",
|
@@ -560,24 +608,26 @@ def create_gradio_interface():
|
|
560 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
561 |
task: "Comb. Perf. ⬆️"
|
562 |
}),
|
563 |
-
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
564 |
-
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
565 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
566 |
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
567 |
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
568 |
'Best Prompt Id']]
|
569 |
)
|
570 |
|
571 |
-
|
572 |
-
|
|
|
573 |
|
574 |
-
|
|
|
575 |
for task, metadata in TASK_METADATA_GENERATIVE.items():
|
576 |
with gr.TabItem(f"{metadata['icon']}{task}"):
|
577 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
578 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
579 |
|
580 |
-
|
581 |
LEADERBOARD_DF.rename(columns={
|
582 |
f"{task} Prompt Average": "Prompt Average",
|
583 |
f"{task} Prompt Std": "Prompt Std",
|
@@ -585,15 +635,15 @@ def create_gradio_interface():
|
|
585 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
586 |
task: "Comb. Perf. ⬆️"
|
587 |
}),
|
588 |
-
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
589 |
-
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
590 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
591 |
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
592 |
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
593 |
'Best Prompt Id']]
|
594 |
)
|
595 |
|
596 |
-
# Citation
|
597 |
with gr.Accordion("📙 Citation", open=False):
|
598 |
gr.Textbox(
|
599 |
value=CITATION_BUTTON_TEXT,
|
@@ -622,4 +672,4 @@ if __name__ == "__main__":
|
|
622 |
demo.queue(default_concurrency_limit=40).launch(
|
623 |
debug=True,
|
624 |
show_error=True
|
625 |
-
)
|
|
|
490 |
theoretical_max_combined_perf = 0.0
|
491 |
|
492 |
|
493 |
+
# Main Gradio interface
|
494 |
def create_gradio_interface():
|
495 |
"""The main Gradio interface."""
|
496 |
demo = gr.Blocks(css=custom_css)
|
497 |
|
498 |
with demo:
|
499 |
+
# Titolo
|
500 |
gr.HTML(create_title_html())
|
501 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
502 |
|
503 |
+
# Tabs principali
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
505 |
+
# 🏅 Benchmark
|
506 |
with gr.TabItem("🏅 Benchmark"):
|
507 |
if LEADERBOARD_DF is not None:
|
508 |
+
# Labels dei campi affiancate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
|
510 |
+
with gr.Row():
|
511 |
+
# Labels dei campi affiancate
|
512 |
+
gr.HTML(f"""
|
513 |
<div style="
|
514 |
+
display: flex; justify-content: flex-start; width: 100%; gap: 5px;
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
">
|
516 |
+
<div style="
|
517 |
+
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
518 |
+
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
519 |
+
text-align: center;
|
520 |
+
display: flex; align-items: center; justify-content: center;
|
521 |
+
min-height: 28px; white-space: nowrap;
|
522 |
+
" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard.">
|
523 |
+
Models tested: {len(LEADERBOARD_DF)}
|
524 |
+
</div>
|
525 |
+
<div style="
|
526 |
+
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
527 |
+
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
528 |
+
text-align: center;
|
529 |
+
display: flex; align-items: center; justify-content: center;
|
530 |
+
min-height: 28px; white-space: nowrap;
|
531 |
+
" title="Average accuracy of the evaluated model">
|
532 |
+
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}
|
533 |
+
</div>
|
534 |
+
<div style="
|
535 |
+
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
536 |
+
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
537 |
+
text-align: center;
|
538 |
+
display: flex; align-items: center; justify-content: center;
|
539 |
+
min-height: 28px; white-space: nowrap;
|
540 |
+
" title="Standard deviation of the evaluated models' performance.">
|
541 |
+
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}
|
542 |
+
</div>
|
543 |
+
<div style="
|
544 |
+
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
545 |
+
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
546 |
+
text-align: center;
|
547 |
+
display: flex; align-items: center; justify-content: center;
|
548 |
+
min-height: 28px; white-space: nowrap;
|
549 |
+
" title="Best evaluated model.">
|
550 |
+
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}
|
551 |
+
</div>
|
552 |
+
<div style="
|
553 |
+
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
554 |
+
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
555 |
+
text-align: center;
|
556 |
+
display: flex; align-items: center; justify-content: center;
|
557 |
+
min-height: 28px; white-space: nowrap;
|
558 |
+
" title="Accuracy of the best evaluated model.">
|
559 |
+
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}
|
560 |
+
</div>
|
561 |
+
<div style="
|
562 |
+
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
563 |
+
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
564 |
+
text-align: center;
|
565 |
+
display: flex; align-items: center; justify-content: center;
|
566 |
+
min-height: 28px; white-space: nowrap;
|
567 |
+
" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard.">
|
568 |
+
Theoretical max: {theoretical_max_combined_perf:.2f}
|
569 |
+
</div>
|
570 |
</div>
|
571 |
+
""")
|
572 |
+
|
573 |
+
# Grafici affiancati
|
574 |
+
with gr.Row():
|
575 |
+
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
576 |
+
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
|
577 |
+
|
578 |
+
# Leaderboard
|
579 |
+
leaderboard = init_leaderboard(
|
580 |
+
LEADERBOARD_DF,
|
581 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️",
|
582 |
+
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
583 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
584 |
+
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️",
|
585 |
+
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
586 |
)
|
587 |
|
588 |
+
# 📝 About
|
589 |
with gr.TabItem("📝 About"):
|
590 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
591 |
|
592 |
+
# Separatori
|
593 |
with gr.TabItem("║", interactive=False):
|
594 |
gr.Markdown("", elem_classes="markdown-text")
|
595 |
|
596 |
+
# Task-specific tabs (Multiple Choice)
|
597 |
if LEADERBOARD_DF is not None:
|
|
|
598 |
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
599 |
with gr.TabItem(f"{metadata['icon']}{task}"):
|
600 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
601 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
602 |
|
603 |
+
leaderboard_task = update_task_leaderboard(
|
604 |
LEADERBOARD_DF.rename(columns={
|
605 |
f"{task} Prompt Average": "Prompt Average",
|
606 |
f"{task} Prompt Std": "Prompt Std",
|
|
|
608 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
609 |
task: "Comb. Perf. ⬆️"
|
610 |
}),
|
611 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
612 |
+
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
613 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
614 |
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
615 |
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
616 |
'Best Prompt Id']]
|
617 |
)
|
618 |
|
619 |
+
# Separatori
|
620 |
+
with gr.TabItem("│", interactive=False):
|
621 |
+
gr.Markdown("", elem_classes="markdown-text")
|
622 |
|
623 |
+
# Task-specific tabs (Generative)
|
624 |
+
if LEADERBOARD_DF is not None:
|
625 |
for task, metadata in TASK_METADATA_GENERATIVE.items():
|
626 |
with gr.TabItem(f"{metadata['icon']}{task}"):
|
627 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
628 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
629 |
|
630 |
+
leaderboard_task = update_task_leaderboard(
|
631 |
LEADERBOARD_DF.rename(columns={
|
632 |
f"{task} Prompt Average": "Prompt Average",
|
633 |
f"{task} Prompt Std": "Prompt Std",
|
|
|
635 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
636 |
task: "Comb. Perf. ⬆️"
|
637 |
}),
|
638 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
639 |
+
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
640 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
641 |
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
642 |
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
643 |
'Best Prompt Id']]
|
644 |
)
|
645 |
|
646 |
+
# Citation e Credits
|
647 |
with gr.Accordion("📙 Citation", open=False):
|
648 |
gr.Textbox(
|
649 |
value=CITATION_BUTTON_TEXT,
|
|
|
672 |
demo.queue(default_concurrency_limit=40).launch(
|
673 |
debug=True,
|
674 |
show_error=True
|
675 |
+
)
|
app_22_09_2025.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from functools import lru_cache
|
7 |
+
import logging
|
8 |
+
|
9 |
+
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
|
10 |
+
LLM_BENCHMARKS_TEXT, TITLE
|
11 |
+
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
|
12 |
+
from src.display.css_html_js import custom_css
|
13 |
+
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
|
14 |
+
WeightType, Precision
|
15 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
16 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
17 |
+
from src.submission.submit import add_new_eval
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import re
|
20 |
+
import plotly.express as px
|
21 |
+
import plotly.graph_objects as go
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
# Configure logging
|
25 |
+
logging.basicConfig(level=logging.INFO)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
# EVALITA results
|
29 |
+
BASELINES = {
|
30 |
+
"TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
|
31 |
+
"LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
|
32 |
+
}
|
33 |
+
|
34 |
+
# GPT-4o results
|
35 |
+
REFERENCES = {
|
36 |
+
"NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
|
37 |
+
}
|
38 |
+
|
39 |
+
TASK_METADATA_MULTIPLECHOICE = {
|
40 |
+
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
41 |
+
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
|
42 |
+
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
|
43 |
+
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
|
44 |
+
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
|
45 |
+
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
|
46 |
+
}
|
47 |
+
|
48 |
+
TASK_METADATA_GENERATIVE = {
|
49 |
+
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
|
50 |
+
"SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
|
51 |
+
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
|
52 |
+
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
|
53 |
+
}
|
54 |
+
|
55 |
+
def highlight_best_per_task(df):
|
56 |
+
"""Add 🟡 symbol next to the maximum value in each task column"""
|
57 |
+
|
58 |
+
task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
59 |
+
|
60 |
+
df = df.copy()
|
61 |
+
for col in task_columns:
|
62 |
+
if col in df.columns:
|
63 |
+
max_val = df[col].max()
|
64 |
+
df[col] = df[col].apply(
|
65 |
+
lambda x: f"{x:.1f}🔺" if x == max_val else f"{x:.1f}"
|
66 |
+
)
|
67 |
+
return df
|
68 |
+
|
69 |
+
def theoretical_performance(df_hash):
|
70 |
+
"""
|
71 |
+
Theoretical performance of a model that scores the highest on every individual task
|
72 |
+
"""
|
73 |
+
# This is a placeholder - you'd need to pass the actual dataframe
|
74 |
+
# In practice, you'd compute this once and store it
|
75 |
+
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
76 |
+
return 75.0 # Placeholder value
|
77 |
+
|
78 |
+
|
79 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
80 |
+
"""Normalize sizes for scatter plot markers """
|
81 |
+
if not values:
|
82 |
+
return []
|
83 |
+
vmin, vmax = min(values), max(values)
|
84 |
+
if vmax == vmin:
|
85 |
+
return [(min_size + max_size) / 2] * len(values)
|
86 |
+
return [
|
87 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
|
88 |
+
for val in values
|
89 |
+
]
|
90 |
+
|
91 |
+
|
92 |
+
def extract_model_name(model_string):
|
93 |
+
"""Extract model name from HTML string."""
|
94 |
+
match = re.search(r'>([^<]+)<', model_string)
|
95 |
+
return match.group(1) if match else model_string
|
96 |
+
|
97 |
+
|
98 |
+
def create_line_chart(dataframe):
|
99 |
+
"""Create left chart."""
|
100 |
+
|
101 |
+
def scale_sizes(values, min_size=8, max_size=30):
|
102 |
+
vmin, vmax = min(values), max(values)
|
103 |
+
return [
|
104 |
+
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
|
105 |
+
else (min_size + max_size) / 2
|
106 |
+
for val in values
|
107 |
+
]
|
108 |
+
|
109 |
+
fig = go.Figure()
|
110 |
+
|
111 |
+
# Loop su 5-Shot e 0-Shot
|
112 |
+
for shot, color in [(True, "blue"), (False, "red")]:
|
113 |
+
df = dataframe[dataframe["IS_FS"] == shot]
|
114 |
+
|
115 |
+
x = df["#Params (B)"].tolist()
|
116 |
+
y = df["Avg. Comb. Perf. ⬆️"].tolist()
|
117 |
+
labels = [
|
118 |
+
re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
|
119 |
+
for m in df["Model"].tolist()
|
120 |
+
]
|
121 |
+
|
122 |
+
fig.add_trace(go.Scatter(
|
123 |
+
x=x,
|
124 |
+
y=y,
|
125 |
+
mode="markers",
|
126 |
+
name="5-Shot" if shot else "0-Shot",
|
127 |
+
marker=dict(color=color, size=scale_sizes(x)),
|
128 |
+
hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
|
129 |
+
customdata=labels,
|
130 |
+
))
|
131 |
+
|
132 |
+
# Show the best model
|
133 |
+
all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
|
134 |
+
if all_y:
|
135 |
+
max_idx = all_y.index(max(all_y))
|
136 |
+
max_x = dataframe["#Params (B)"].iloc[max_idx]
|
137 |
+
max_y = all_y[max_idx]
|
138 |
+
max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
|
139 |
+
|
140 |
+
fig.add_annotation(
|
141 |
+
x=max_x,
|
142 |
+
y=max_y,
|
143 |
+
text=max_label,
|
144 |
+
showarrow=True,
|
145 |
+
arrowhead=2,
|
146 |
+
arrowsize=1,
|
147 |
+
arrowwidth=2,
|
148 |
+
arrowcolor="black",
|
149 |
+
font=dict(size=11, color="black"),
|
150 |
+
xshift=10, yshift=10,
|
151 |
+
ax=-30, ay=-20,
|
152 |
+
xanchor="right"
|
153 |
+
)
|
154 |
+
|
155 |
+
# Layout
|
156 |
+
fig.update_layout(
|
157 |
+
title="Average Combined Performance vs #Params",
|
158 |
+
xaxis_title="#Params (B)", yaxis_title="Average Combined Performance",
|
159 |
+
template="plotly_white", hovermode="closest",
|
160 |
+
font=dict(family="Arial", size=10), dragmode=False,
|
161 |
+
xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
|
162 |
+
yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
|
163 |
+
)
|
164 |
+
|
165 |
+
# Caption
|
166 |
+
fig.add_annotation(
|
167 |
+
text="Accuracy generally rises with #Params, but smaller models <br>"
|
168 |
+
"with 5-shot can outperform larger zero-shot models.",
|
169 |
+
xref="paper", yref="paper", x=0.5, y=-0.3,
|
170 |
+
showarrow=False, font=dict(size=11, color="gray"),
|
171 |
+
align="center", xanchor="center"
|
172 |
+
)
|
173 |
+
|
174 |
+
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
|
175 |
+
fig.update_yaxes(fixedrange=True)
|
176 |
+
|
177 |
+
return fig
|
178 |
+
|
179 |
+
|
180 |
+
def create_boxplot_task(dataframe=None, baselines=None, references=None):
|
181 |
+
"""Create right chart"""
|
182 |
+
|
183 |
+
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
184 |
+
|
185 |
+
# Dati di default se non forniti
|
186 |
+
if dataframe is None:
|
187 |
+
np.random.seed(42)
|
188 |
+
dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
|
189 |
+
|
190 |
+
if baselines is None:
|
191 |
+
baselines = {task: np.random.randint(50, 70) for task in tasks}
|
192 |
+
|
193 |
+
if references is None:
|
194 |
+
references = {}
|
195 |
+
|
196 |
+
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
197 |
+
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
|
198 |
+
|
199 |
+
fig = go.Figure()
|
200 |
+
|
201 |
+
for i, task in enumerate(tasks):
|
202 |
+
if task not in dataframe.columns:
|
203 |
+
continue
|
204 |
+
|
205 |
+
y_data = dataframe[task].dropna().tolist()
|
206 |
+
|
207 |
+
# Boxplot
|
208 |
+
fig.add_trace(go.Box(
|
209 |
+
y=y_data,
|
210 |
+
name=task,
|
211 |
+
marker=dict(color=colors[i]),
|
212 |
+
line=dict(color="black", width=2),
|
213 |
+
fillcolor=colors[i],
|
214 |
+
opacity=0.7,
|
215 |
+
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
|
216 |
+
hoverlabel=dict(bgcolor=colors[i], font_color="white"),
|
217 |
+
width=0.6,
|
218 |
+
whiskerwidth=0.2,
|
219 |
+
quartilemethod="linear"
|
220 |
+
))
|
221 |
+
|
222 |
+
# Linea baseline
|
223 |
+
baseline_value = baselines.get(task)
|
224 |
+
if baseline_value is not None:
|
225 |
+
fig.add_shape(
|
226 |
+
type="line",
|
227 |
+
x0=i - 0.3, x1=i + 0.3,
|
228 |
+
y0=baseline_value, y1=baseline_value,
|
229 |
+
line=dict(color="black", width=2, dash="dot"),
|
230 |
+
xref="x", yref="y"
|
231 |
+
)
|
232 |
+
|
233 |
+
# Linea reference GPT-4o
|
234 |
+
reference_value = references.get(task)
|
235 |
+
if reference_value is not None:
|
236 |
+
fig.add_shape(
|
237 |
+
type="line",
|
238 |
+
x0=i - 0.3, x1=i + 0.3,
|
239 |
+
y0=reference_value, y1=reference_value,
|
240 |
+
line=dict(color="red", width=2, dash="dashdot"),
|
241 |
+
xref="x", yref="y"
|
242 |
+
)
|
243 |
+
|
244 |
+
# Layout
|
245 |
+
fig.update_layout(
|
246 |
+
title="Distribution of Model Accuracy by Task",
|
247 |
+
xaxis_title="Task",
|
248 |
+
yaxis_title="Combined Performance",
|
249 |
+
template="plotly_white",
|
250 |
+
boxmode="group",
|
251 |
+
dragmode=False,
|
252 |
+
font=dict(family="Arial", size=10),
|
253 |
+
margin=dict(b=80),
|
254 |
+
)
|
255 |
+
|
256 |
+
# Caption
|
257 |
+
fig.add_annotation(
|
258 |
+
text=(
|
259 |
+
"In tasks like TE and SA, models approach the accuracy of supervised <br>"
|
260 |
+
"models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
|
261 |
+
"Dashed red lines show GPT-4o reference results for generative tasks."
|
262 |
+
),
|
263 |
+
xref="paper", yref="paper",
|
264 |
+
x=0.5, y=-0.30,
|
265 |
+
showarrow=False,
|
266 |
+
font=dict(size=11, color="gray"),
|
267 |
+
align="center"
|
268 |
+
)
|
269 |
+
|
270 |
+
fig.update_yaxes(range=[0, 100], fixedrange=True)
|
271 |
+
fig.update_xaxes(fixedrange=True)
|
272 |
+
|
273 |
+
return fig
|
274 |
+
|
275 |
+
|
276 |
+
def create_medal_assignments(sorted_df):
|
277 |
+
"""Function for medal assignment logic"""
|
278 |
+
medals = {
|
279 |
+
'large_fs': False, 'medium_fs': False, 'small_fs': False,
|
280 |
+
'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
|
281 |
+
}
|
282 |
+
|
283 |
+
new_model_column = []
|
284 |
+
|
285 |
+
for _, row in sorted_df.iterrows():
|
286 |
+
model_name = row['Model']
|
287 |
+
size = row["Size"]
|
288 |
+
is_fs = row['IS_FS']
|
289 |
+
|
290 |
+
if is_fs: # 5-Few-Shot
|
291 |
+
if size == "🔵🔵🔵" and not medals['large_fs']:
|
292 |
+
model_name = f"{model_name} 🔵🔵🔵🏆"
|
293 |
+
medals['large_fs'] = True
|
294 |
+
elif size == "🔵🔵" and not medals['medium_fs']:
|
295 |
+
model_name = f"{model_name} 🔵🔵🏆"
|
296 |
+
medals['medium_fs'] = True
|
297 |
+
elif size == "🔵" and not medals['small_fs']:
|
298 |
+
model_name = f"{model_name} 🔵🏆"
|
299 |
+
medals['small_fs'] = True
|
300 |
+
else: # 0-Shot
|
301 |
+
if size == "🔵🔵🔵" and not medals['large_0shot']:
|
302 |
+
model_name = f"{model_name} 🔵🔵🔵🎖️"
|
303 |
+
medals['large_0shot'] = True
|
304 |
+
elif size == "🔵🔵" and not medals['medium_0shot']:
|
305 |
+
model_name = f"{model_name} 🔵🔵🎖️"
|
306 |
+
medals['medium_0shot'] = True
|
307 |
+
elif size == "🔵" and not medals['small_0shot']:
|
308 |
+
model_name = f"{model_name} 🔵🎖️"
|
309 |
+
medals['small_0shot'] = True
|
310 |
+
|
311 |
+
new_model_column.append(model_name)
|
312 |
+
|
313 |
+
return new_model_column
|
314 |
+
|
315 |
+
|
316 |
+
def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
|
317 |
+
"""Base leaderboard creation with common parameters. """
|
318 |
+
|
319 |
+
return Leaderboard(
|
320 |
+
value=sorted_dataframe,
|
321 |
+
datatype=[c.type for c in field_list],
|
322 |
+
search_columns=[AutoEvalColumn.model.name],
|
323 |
+
hide_columns=hidden_columns,
|
324 |
+
filter_columns=[
|
325 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
326 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
327 |
+
label="Select the number of parameters (B)"),
|
328 |
+
],
|
329 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
330 |
+
interactive=False,
|
331 |
+
)
|
332 |
+
|
333 |
+
|
334 |
+
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
335 |
+
"""Leaderboard initialization """
|
336 |
+
if dataframe is None or dataframe.empty:
|
337 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
338 |
+
|
339 |
+
# Sort and reset index
|
340 |
+
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
|
341 |
+
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
342 |
+
|
343 |
+
# Apply medal assignments
|
344 |
+
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
|
345 |
+
|
346 |
+
# Show the best values for tasks
|
347 |
+
sorted_dataframe = highlight_best_per_task(sorted_dataframe)
|
348 |
+
|
349 |
+
field_list = fields(AutoEvalColumn)
|
350 |
+
|
351 |
+
return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
|
352 |
+
|
353 |
+
|
354 |
+
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
355 |
+
|
356 |
+
""" Task-specific leaderboard update."""
|
357 |
+
if dataframe is None or dataframe.empty:
|
358 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
359 |
+
|
360 |
+
# Sort and reset index
|
361 |
+
sorted_dataframe = dataframe.sort_values(by="Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
|
362 |
+
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
|
363 |
+
|
364 |
+
# Apply medal assignments
|
365 |
+
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
|
366 |
+
|
367 |
+
field_list = fields(AutoEvalColumn)
|
368 |
+
|
369 |
+
return Leaderboard(
|
370 |
+
value=sorted_dataframe,
|
371 |
+
datatype=[c.type for c in field_list] + [int],
|
372 |
+
search_columns=[AutoEvalColumn.model.name],
|
373 |
+
hide_columns=hidden_columns,
|
374 |
+
filter_columns=[
|
375 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
376 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
377 |
+
label="Select the number of parameters (B)"),
|
378 |
+
],
|
379 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
380 |
+
interactive=False
|
381 |
+
)
|
382 |
+
|
383 |
+
|
384 |
+
def download_snapshot(repo, local_dir, max_retries=3):
|
385 |
+
"""Snapshot download with retry logic."""
|
386 |
+
for attempt in range(max_retries):
|
387 |
+
try:
|
388 |
+
logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
|
389 |
+
snapshot_download(
|
390 |
+
repo_id=repo,
|
391 |
+
local_dir=local_dir,
|
392 |
+
repo_type="dataset",
|
393 |
+
tqdm_class=None,
|
394 |
+
etag_timeout=30,
|
395 |
+
token=TOKEN
|
396 |
+
)
|
397 |
+
return True
|
398 |
+
except Exception as e:
|
399 |
+
logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
|
400 |
+
if attempt == max_retries - 1:
|
401 |
+
logger.error(f"Failed to download {repo} after {max_retries} attempts")
|
402 |
+
return False
|
403 |
+
return False
|
404 |
+
|
405 |
+
|
406 |
+
def restart_space():
|
407 |
+
"""Restart the Hugging Face space."""
|
408 |
+
try:
|
409 |
+
logger.info("Restarting space... ")
|
410 |
+
API.restart_space(repo_id=REPO_ID)
|
411 |
+
except Exception as e:
|
412 |
+
logger.error(f"Error restarting space: {e}")
|
413 |
+
|
414 |
+
|
415 |
+
def create_title_html():
|
416 |
+
"""Function for title HTML."""
|
417 |
+
return """
|
418 |
+
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
|
419 |
+
<h1 style="
|
420 |
+
margin: 0 auto;
|
421 |
+
font-weight: 900;
|
422 |
+
font-size: 2.5em;
|
423 |
+
letter-spacing: 2px;
|
424 |
+
text-transform: uppercase;
|
425 |
+
background: linear-gradient(90deg, #1f77b4, #00c6ff);
|
426 |
+
-webkit-background-clip: text;
|
427 |
+
-webkit-text-fill-color: transparent;
|
428 |
+
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
|
429 |
+
">
|
430 |
+
EVALITA-LLM Leaderboard
|
431 |
+
</h1>
|
432 |
+
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
|
433 |
+
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
|
434 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
|
435 |
+
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
|
436 |
+
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
|
437 |
+
</svg>
|
438 |
+
Open Italian LLM Leaderboard
|
439 |
+
</a>
|
440 |
+
</div>
|
441 |
+
"""
|
442 |
+
|
443 |
+
|
444 |
+
def create_credits_markdown():
|
445 |
+
"""Credits section."""
|
446 |
+
return """
|
447 |
+
**This project has benefited from the following support:**
|
448 |
+
|
449 |
+
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
|
450 |
+
|
451 |
+
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
|
452 |
+
|
453 |
+
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
|
454 |
+
"""
|
455 |
+
|
456 |
+
|
457 |
+
# Main initialization
|
458 |
+
def initialize_app():
|
459 |
+
"""Initialize the application ."""
|
460 |
+
try:
|
461 |
+
# Download snapshots
|
462 |
+
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
463 |
+
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
464 |
+
|
465 |
+
if not (queue_success and results_success):
|
466 |
+
logger.error("Failed to download required data")
|
467 |
+
return None, None, None, None, None
|
468 |
+
|
469 |
+
# Load leaderboard data
|
470 |
+
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
471 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
|
472 |
+
EVAL_REQUESTS_PATH, EVAL_COLS)
|
473 |
+
|
474 |
+
# Calculate theoretical max performance
|
475 |
+
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
|
476 |
+
|
477 |
+
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
|
478 |
+
|
479 |
+
except Exception as e:
|
480 |
+
logger.error(f"Error initializing app: {e}")
|
481 |
+
return None, None, None, None, None
|
482 |
+
|
483 |
+
|
484 |
+
# Initialize data
|
485 |
+
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
|
486 |
+
|
487 |
+
if LEADERBOARD_DF is None:
|
488 |
+
# Fallback behavior
|
489 |
+
logger.error("Failed to initialize app data")
|
490 |
+
theoretical_max_combined_perf = 0.0
|
491 |
+
|
492 |
+
|
493 |
+
def create_gradio_interface():
|
494 |
+
"""The main Gradio interface."""
|
495 |
+
demo = gr.Blocks(css=custom_css)
|
496 |
+
|
497 |
+
with demo:
|
498 |
+
# Title
|
499 |
+
gr.HTML(create_title_html())
|
500 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
501 |
+
|
502 |
+
# Charts section
|
503 |
+
with gr.Row():
|
504 |
+
if LEADERBOARD_DF is not None:
|
505 |
+
# Note: You'd need to implement these chart functions properly
|
506 |
+
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
|
507 |
+
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
|
508 |
+
|
509 |
+
# Tabs
|
510 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
511 |
+
# Main leaderboard tab
|
512 |
+
with gr.TabItem("🏅 Benchmark"):
|
513 |
+
if LEADERBOARD_DF is not None:
|
514 |
+
leaderboard = init_leaderboard(
|
515 |
+
LEADERBOARD_DF,
|
516 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT",
|
517 |
+
"WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
518 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
519 |
+
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA",
|
520 |
+
"HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
521 |
+
)
|
522 |
+
|
523 |
+
gr.HTML(
|
524 |
+
f"""
|
525 |
+
<div style="
|
526 |
+
border: 2px solid #1f77b4;
|
527 |
+
border-radius: 10px;
|
528 |
+
padding: 10px;
|
529 |
+
background-color: #f0f8ff;
|
530 |
+
font-weight: bold;
|
531 |
+
font-size: 14px;
|
532 |
+
display: inline-block;
|
533 |
+
">
|
534 |
+
Theoretical performance of a model that scores the highest on every individual task:
|
535 |
+
<span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
|
536 |
+
</div>
|
537 |
+
"""
|
538 |
+
)
|
539 |
+
|
540 |
+
# About tab
|
541 |
+
with gr.TabItem("📝 About"):
|
542 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
543 |
+
|
544 |
+
with gr.TabItem("║", interactive=False):
|
545 |
+
gr.Markdown("", elem_classes="markdown-text")
|
546 |
+
|
547 |
+
# Task-specific tabs
|
548 |
+
if LEADERBOARD_DF is not None:
|
549 |
+
# Multiple choice tasks
|
550 |
+
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
551 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
552 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
553 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
554 |
+
|
555 |
+
leaderboard = update_task_leaderboard(
|
556 |
+
LEADERBOARD_DF.rename(columns={
|
557 |
+
f"{task} Prompt Average": "Prompt Average",
|
558 |
+
f"{task} Prompt Std": "Prompt Std",
|
559 |
+
f"{task} Best Prompt": "Best Prompt",
|
560 |
+
f"{task} Best Prompt Id": "Best Prompt Id",
|
561 |
+
task: "Comb. Perf. ⬆️"
|
562 |
+
}),
|
563 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average',
|
564 |
+
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
565 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
566 |
+
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
567 |
+
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
568 |
+
'Best Prompt Id']]
|
569 |
+
)
|
570 |
+
|
571 |
+
with gr.TabItem("│", interactive=False):
|
572 |
+
gr.Markdown("", elem_classes="markdown-text")
|
573 |
+
|
574 |
+
# Generative tasks
|
575 |
+
for task, metadata in TASK_METADATA_GENERATIVE.items():
|
576 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
577 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
578 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
579 |
+
|
580 |
+
leaderboard = update_task_leaderboard(
|
581 |
+
LEADERBOARD_DF.rename(columns={
|
582 |
+
f"{task} Prompt Average": "Prompt Average",
|
583 |
+
f"{task} Prompt Std": "Prompt Std",
|
584 |
+
f"{task} Best Prompt": "Best Prompt",
|
585 |
+
f"{task} Best Prompt Id": "Best Prompt Id",
|
586 |
+
task: "Comb. Perf. ⬆️"
|
587 |
+
}),
|
588 |
+
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average',
|
589 |
+
'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
|
590 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
591 |
+
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
|
592 |
+
'Prompt Average', 'Prompt Std', 'Best Prompt',
|
593 |
+
'Best Prompt Id']]
|
594 |
+
)
|
595 |
+
|
596 |
+
# Citation and Credits sections
|
597 |
+
with gr.Accordion("📙 Citation", open=False):
|
598 |
+
gr.Textbox(
|
599 |
+
value=CITATION_BUTTON_TEXT,
|
600 |
+
label=CITATION_BUTTON_LABEL,
|
601 |
+
lines=20,
|
602 |
+
elem_id="citation-button",
|
603 |
+
show_copy_button=True
|
604 |
+
)
|
605 |
+
|
606 |
+
with gr.Accordion("📙 Credits", open=False):
|
607 |
+
gr.Markdown(create_credits_markdown())
|
608 |
+
|
609 |
+
return demo
|
610 |
+
|
611 |
+
|
612 |
+
# Create and configure the demo
|
613 |
+
demo = create_gradio_interface()
|
614 |
+
|
615 |
+
# Background scheduler for space restart
|
616 |
+
scheduler = BackgroundScheduler()
|
617 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
618 |
+
scheduler.start()
|
619 |
+
|
620 |
+
# Launch configuration
|
621 |
+
if __name__ == "__main__":
|
622 |
+
demo.queue(default_concurrency_limit=40).launch(
|
623 |
+
debug=True,
|
624 |
+
show_error=True
|
625 |
+
)
|