Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under thmage license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
from concurrent.futures import ProcessPoolExecutor | |
import logging | |
import os | |
from pathlib import Path | |
import subprocess as sp | |
import sys | |
from tempfile import NamedTemporaryFile | |
import time | |
import typing as tp | |
import warnings | |
import gradio as gr | |
from audiocraft.data.audio import audio_write | |
from audiocraft.models import MAGNeT | |
MODEL = None # Last used model | |
SPACE_ID = os.environ.get('SPACE_ID', '') | |
MAX_BATCH_SIZE = 12 | |
N_REPEATS = 2 | |
INTERRUPTING = False | |
MBD = None | |
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform | |
_old_call = sp.call | |
PROD_STRIDE_1 = "prod-stride1 (new!)" | |
def _call_nostderr(*args, **kwargs): | |
# Avoid ffmpeg vomiting on the logs. | |
kwargs['stderr'] = sp.DEVNULL | |
kwargs['stdout'] = sp.DEVNULL | |
_old_call(*args, **kwargs) | |
sp.call = _call_nostderr | |
# Preallocating the pool of processes. | |
pool = ProcessPoolExecutor(4) | |
pool.__enter__() | |
def interrupt(): | |
global INTERRUPTING | |
INTERRUPTING = True | |
class FileCleaner: | |
def __init__(self, file_lifetime: float = 3600): | |
self.file_lifetime = file_lifetime | |
self.files = [] | |
def add(self, path: tp.Union[str, Path]): | |
self._cleanup() | |
self.files.append((time.time(), Path(path))) | |
def _cleanup(self): | |
now = time.time() | |
for time_added, path in list(self.files): | |
if now - time_added > self.file_lifetime: | |
if path.exists(): | |
path.unlink() | |
self.files.pop(0) | |
else: | |
break | |
file_cleaner = FileCleaner() | |
def make_waveform(*args, **kwargs): | |
# Further remove some warnings. | |
be = time.time() | |
with warnings.catch_warnings(): | |
warnings.simplefilter('ignore') | |
out = gr.make_waveform(*args, **kwargs) | |
print("Make a video took", time.time() - be) | |
return out | |
def load_model(version='facebook/magnet-small-10secs'): | |
global MODEL | |
print("Loading model", version) | |
if MODEL is None or MODEL.name != version: | |
MODEL = None # in case loading would crash | |
MODEL = MAGNeT.get_pretrained(version) | |
def _do_predictions(texts, progress=False, gradio_progress=None, **gen_kwargs): | |
MODEL.set_generation_params(**gen_kwargs) | |
print("new batch", len(texts), texts) | |
be = time.time() | |
try: | |
outputs = MODEL.generate(texts, progress=progress, return_tokens=False) | |
except RuntimeError as e: | |
raise gr.Error("Error while generating " + e.args[0]) | |
outputs = outputs.detach().cpu().float() | |
pending_videos = [] | |
out_wavs = [] | |
for i, output in enumerate(outputs): | |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
audio_write( | |
file.name, output, MODEL.sample_rate, strategy="loudness", | |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) | |
if i == 0: | |
pending_videos.append(pool.submit(make_waveform, file.name)) | |
out_wavs.append(file.name) | |
file_cleaner.add(file.name) | |
out_videos = [pending_video.result() for pending_video in pending_videos] | |
for video in out_videos: | |
file_cleaner.add(video) | |
print("batch finished", len(texts), time.time() - be) | |
print("Tempfiles currently stored: ", len(file_cleaner.files)) | |
return out_videos, out_wavs | |
def predict_batched(texts, melodies): | |
max_text_length = 512 | |
texts = [text[:max_text_length] for text in texts] | |
load_model('facebook/magnet-small-10secs') | |
res = _do_predictions(texts, melodies) | |
return res | |
def predict_full(model, model_path, text, temperature, topp, | |
max_cfg_coef, min_cfg_coef, | |
decoding_steps1, decoding_steps2, decoding_steps3, decoding_steps4, | |
span_score, | |
progress=gr.Progress()): | |
global INTERRUPTING | |
INTERRUPTING = False | |
progress(0, desc="Loading model...") | |
model_path = model_path.strip() | |
if model_path: | |
if not Path(model_path).exists(): | |
raise gr.Error(f"Model path {model_path} doesn't exist.") | |
if not Path(model_path).is_dir(): | |
raise gr.Error(f"Model path {model_path} must be a folder containing " | |
"state_dict.bin and compression_state_dict_.bin.") | |
model = model_path | |
if temperature < 0: | |
raise gr.Error("Temperature must be >= 0.") | |
load_model(model) | |
max_generated = 0 | |
def _progress(generated, to_generate): | |
nonlocal max_generated | |
max_generated = max(generated, max_generated) | |
progress((min(max_generated, to_generate), to_generate)) | |
if INTERRUPTING: | |
raise gr.Error("Interrupted.") | |
MODEL.set_custom_progress_callback(_progress) | |
videos, wavs = _do_predictions( | |
[text] * N_REPEATS, progress=True, | |
temperature=temperature, top_p=topp, | |
max_cfg_coef=max_cfg_coef, min_cfg_coef=min_cfg_coef, | |
decoding_steps=[decoding_steps1, decoding_steps2, decoding_steps3, decoding_steps4], | |
span_arrangement='stride1' if (span_score == PROD_STRIDE_1) else 'nonoverlap', | |
gradio_progress=progress) | |
outputs_ = [videos[0]] + [wav for wav in wavs] | |
return tuple(outputs_) | |
def ui_full(launch_kwargs): | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
# MAGNeT | |
This is your private demo for [MAGNeT](https://github.com/facebookresearch/audiocraft), | |
A fast text-to-music model, consists of a single, non-autoregressive transformer. | |
presented at: ["Masked Audio Generation using a Single Non-Autoregressive Transformer"] (https://huggingface.co/papers/2401.04577) | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Input Text", value="80s electronic track with melodic synthesizers, catchy beat and groovy bass", interactive=True) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. | |
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False) | |
with gr.Row(): | |
model = gr.Radio(['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', | |
'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', | |
'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'], | |
label="Model", value='facebook/magnet-small-10secs', interactive=True) | |
model_path = gr.Text(label="Model Path (custom models)") | |
with gr.Row(): | |
span_score = gr.Radio(["max-nonoverlap", PROD_STRIDE_1], | |
label="Span Scoring", value=PROD_STRIDE_1, interactive=True) | |
with gr.Row(): | |
decoding_steps1 = gr.Number(label="Decoding Steps (stage 1)", value=20, interactive=True) | |
decoding_steps2 = gr.Number(label="Decoding Steps (stage 2)", value=10, interactive=True) | |
decoding_steps3 = gr.Number(label="Decoding Steps (stage 3)", value=10, interactive=True) | |
decoding_steps4 = gr.Number(label="Decoding Steps (stage 4)", value=10, interactive=True) | |
with gr.Row(): | |
temperature = gr.Number(label="Temperature", value=3.0, step=0.25, minimum=0, interactive=True) | |
topp = gr.Number(label="Top-p", value=0.9, step=0.1, minimum=0, maximum=1, interactive=True) | |
max_cfg_coef = gr.Number(label="Max CFG coefficient", value=10.0, minimum=0, interactive=True) | |
min_cfg_coef = gr.Number(label="Min CFG coefficient", value=1.0, minimum=0, interactive=True) | |
with gr.Column(): | |
output = gr.Video(label="Generated Audio - variation 1") | |
audio_outputs = [gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath') for i in range(N_REPEATS)] | |
submit.click(fn=predict_full, | |
inputs=[model, model_path, text, | |
temperature, topp, | |
max_cfg_coef, min_cfg_coef, | |
decoding_steps1, decoding_steps2, decoding_steps3, decoding_steps4, | |
span_score], | |
outputs=[output] + [o for o in audio_outputs]) | |
gr.Examples( | |
fn=predict_full, | |
examples=[ | |
[ | |
"80s electronic track with melodic synthesizers, catchy beat and groovy bass", | |
'facebook/magnet-small-10secs', | |
20, 3.0, 0.9, 10.0, | |
], | |
[ | |
"80s electronic track with melodic synthesizers, catchy beat and groovy bass. 170 bpm", | |
'facebook/magnet-small-10secs', | |
20, 3.0, 0.9, 10.0, | |
], | |
[ | |
"Earthy tones, environmentally conscious, ukulele-infused, harmonic, breezy, easygoing, organic instrumentation, gentle grooves", | |
'facebook/magnet-medium-10secs', | |
20, 3.0, 0.9, 10.0, | |
], | |
[ "Funky groove with electric piano playing blue chords rhythmically", | |
'facebook/magnet-medium-10secs', | |
20, 3.0, 0.9, 10.0, | |
], | |
[ | |
"Rock with saturated guitars, a heavy bass line and crazy drum break and fills.", | |
'facebook/magnet-small-30secs', | |
60, 3.0, 0.9, 10.0, | |
], | |
[ "A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle", | |
'facebook/magnet-medium-30secs', | |
60, 3.0, 0.9, 10.0, | |
], | |
[ "Seagulls squawking as ocean waves crash while wind blows heavily into a microphone.", | |
'facebook/audio-magnet-small', | |
20, 3.5, 0.8, 20.0, | |
], | |
[ "A toilet flushing as music is playing and a man is singing in the distance.", | |
'facebook/audio-magnet-medium', | |
20, 3.5, 0.8, 20.0, | |
], | |
], | |
inputs=[text, model, decoding_steps1, temperature, topp, max_cfg_coef], | |
outputs=[output] | |
) | |
gr.Markdown( | |
""" | |
### More details | |
#### Music Generation | |
"magnet" models will generate a short music extract based on the textual description you provided. | |
These models can generate either 10 seconds or 30 seconds of music. | |
These models were trained with descriptions from a stock music catalog. Descriptions that will work best | |
should include some level of details on the instruments present, along with some intended use case | |
(e.g. adding "perfect for a commercial" can somehow help). | |
We present 4 model variants: | |
1. facebook/magnet-small-10secs - a 300M non-autoregressive transformer capable of generating 10-second music conditioned | |
on text. | |
2. facebook/magnet-medium-10secs - 1.5B parameters, 10 seconds audio. | |
3. facebook/magnet-small-30secs - 300M parameters, 30 seconds audio. | |
4. facebook/magnet-medium-30secs - 1.5B parameters, 30 seconds audio. | |
#### Sound-Effect Generation | |
"audio-magnet" models will generate a 10-second sound effect based on the description you provide. | |
These models were trained on the following data sources: a subset of AudioSet (Gemmeke et al., 2017), | |
[BBC sound effects](https://sound-effects.bbcrewind.co.uk/), AudioCaps (Kim et al., 2019), | |
Clotho v2 (Drossos et al., 2020), VGG-Sound (Chen et al., 2020), FSD50K (Fonseca et al., 2021), | |
[Free To Use Sounds](https://www.freetousesounds.com/all-in-one-bundle/), [Sonniss Game Effects](https://sonniss.com/gameaudiogdc), | |
[WeSoundEffects](https://wesoundeffects.com/we-sound-effects-bundle-2020/), | |
[Paramount Motion - Odeon Cinematic Sound Effects](https://www.paramountmotion.com/odeon-sound-effects). | |
We present 2 model variants: | |
1. facebook/audio-magnet-small - 10 second sound effect generation, 300M parameters. | |
2. facebook/audio-magnet-medium - 10 second sound effect generation, 1.5B parameters. | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MAGNET.md) | |
for more details. | |
""" | |
) | |
interface.queue().launch(**launch_kwargs) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--listen', | |
type=str, | |
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', | |
help='IP to listen on for connections to Gradio', | |
) | |
parser.add_argument( | |
'--username', type=str, default='', help='Username for authentication' | |
) | |
parser.add_argument( | |
'--password', type=str, default='', help='Password for authentication' | |
) | |
parser.add_argument( | |
'--server_port', | |
type=int, | |
default=0, | |
help='Port to run the server listener on', | |
) | |
parser.add_argument( | |
'--inbrowser', action='store_true', help='Open in browser' | |
) | |
parser.add_argument( | |
'--share', action='store_true', help='Share the gradio UI' | |
) | |
args = parser.parse_args() | |
launch_kwargs = {} | |
launch_kwargs['server_name'] = args.listen | |
if args.username and args.password: | |
launch_kwargs['auth'] = (args.username, args.password) | |
if args.server_port: | |
launch_kwargs['server_port'] = args.server_port | |
if args.inbrowser: | |
launch_kwargs['inbrowser'] = args.inbrowser | |
if args.share: | |
launch_kwargs['share'] = args.share | |
logging.basicConfig(level=logging.INFO, stream=sys.stderr) | |
# Show the interface | |
ui_full(launch_kwargs) | |