vggsfm / vggsfm_code /demo.py
JianyuanWang's picture
push
34d287c
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.cuda.amp import autocast
import hydra
from omegaconf import DictConfig, OmegaConf
from hydra.utils import instantiate
from lightglue import LightGlue, SuperPoint, SIFT, ALIKED
import pycolmap
from visdom import Visdom
from vggsfm.datasets.demo_loader import DemoLoader
from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras
try:
import poselib
from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras_poselib
print("Poselib is available")
except:
print("Poselib is not installed. Please disable use_poselib")
from vggsfm.utils.utils import (
set_seed_and_print,
farthest_point_sampling,
calculate_index_mappings,
switch_tensor_order,
)
@hydra.main(config_path="cfgs/", config_name="demo")
def demo_fn(cfg: DictConfig):
OmegaConf.set_struct(cfg, False)
# Print configuration
print("Model Config:", OmegaConf.to_yaml(cfg))
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# Set seed
seed_all_random_engines(cfg.seed)
# Model instantiation
model = instantiate(cfg.MODEL, _recursive_=False, cfg=cfg)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Prepare test dataset
test_dataset = DemoLoader(
SCENE_DIR=cfg.SCENE_DIR, img_size=cfg.img_size, normalize_cameras=False, load_gt=cfg.load_gt, cfg=cfg
)
if cfg.resume_ckpt:
# Reload model
checkpoint = torch.load(cfg.resume_ckpt)
model.load_state_dict(checkpoint, strict=True)
print(f"Successfully resumed from {cfg.resume_ckpt}")
if cfg.visualize:
from pytorch3d.structures import Pointclouds
from pytorch3d.vis.plotly_vis import plot_scene
from pytorch3d.renderer.cameras import PerspectiveCameras as PerspectiveCamerasVisual
viz = Visdom()
sequence_list = test_dataset.sequence_list
for seq_name in sequence_list:
print("*" * 50 + f" Testing on Scene {seq_name} " + "*" * 50)
# Load the data
batch, image_paths = test_dataset.get_data(sequence_name=seq_name, return_path=True)
# Send to GPU
images = batch["image"].to(device)
crop_params = batch["crop_params"].to(device)
# Unsqueeze to have batch size = 1
images = images.unsqueeze(0)
crop_params = crop_params.unsqueeze(0)
batch_size = len(images)
with torch.no_grad():
# Run the model
assert cfg.mixed_precision in ("None", "bf16", "fp16")
if cfg.mixed_precision == "None":
dtype = torch.float32
elif cfg.mixed_precision == "bf16":
dtype = torch.bfloat16
elif cfg.mixed_precision == "fp16":
dtype = torch.float16
else:
raise NotImplementedError(f"dtype {cfg.mixed_precision} is not supported now")
predictions = run_one_scene(
model,
images,
crop_params=crop_params,
query_frame_num=cfg.query_frame_num,
image_paths=image_paths,
dtype=dtype,
cfg=cfg,
)
# Export prediction as colmap format
reconstruction_pycolmap = predictions["reconstruction"]
output_path = os.path.join("output", seq_name)
print("-" * 50)
print(f"The output has been saved in COLMAP style at: {output_path} ")
os.makedirs(output_path, exist_ok=True)
reconstruction_pycolmap.write(output_path)
pred_cameras_PT3D = predictions["pred_cameras_PT3D"]
if cfg.visualize:
if "points3D_rgb" in predictions:
pcl = Pointclouds(points=predictions["points3D"][None], features=predictions["points3D_rgb"][None])
else:
pcl = Pointclouds(points=predictions["points3D"][None])
visual_cameras = PerspectiveCamerasVisual(
R=pred_cameras_PT3D.R,
T=pred_cameras_PT3D.T,
device=pred_cameras_PT3D.device,
)
visual_dict = {"scenes": {"points": pcl, "cameras": visual_cameras}}
fig = plot_scene(visual_dict, camera_scale=0.05)
env_name = f"demo_visual_{seq_name}"
print(f"Visualizing the scene by visdom at env: {env_name}")
viz.plotlyplot(fig, env=env_name, win="3D")
return True
def run_one_scene(model, images, crop_params=None, query_frame_num=3, image_paths=None, dtype=None, cfg=None):
"""
images have been normalized to the range [0, 1] instead of [0, 255]
"""
batch_num, frame_num, image_dim, height, width = images.shape
device = images.device
reshaped_image = images.reshape(batch_num * frame_num, image_dim, height, width)
predictions = {}
extra_dict = {}
camera_predictor = model.camera_predictor
track_predictor = model.track_predictor
triangulator = model.triangulator
# Find the query frames
# First use DINO to find the most common frame among all the input frames
# i.e., the one has highest (average) cosine similarity to all others
# Then use farthest_point_sampling to find the next ones
# The number of query frames is determined by query_frame_num
with autocast(dtype=dtype):
query_frame_indexes = find_query_frame_indexes(reshaped_image, camera_predictor, frame_num)
image_paths = [os.path.basename(imgpath) for imgpath in image_paths]
if cfg.center_order:
# The code below switchs the first frame (frame 0) to the most common frame
center_frame_index = query_frame_indexes[0]
center_order = calculate_index_mappings(center_frame_index, frame_num, device=device)
images, crop_params = switch_tensor_order([images, crop_params], center_order, dim=1)
reshaped_image = switch_tensor_order([reshaped_image], center_order, dim=0)[0]
image_paths = [image_paths[i] for i in center_order.cpu().numpy().tolist()]
# Also update query_frame_indexes:
query_frame_indexes = [center_frame_index if x == 0 else x for x in query_frame_indexes]
query_frame_indexes[0] = 0
# only pick query_frame_num
query_frame_indexes = query_frame_indexes[:query_frame_num]
# Prepare image feature maps for tracker
fmaps_for_tracker = track_predictor.process_images_to_fmaps(images)
# Predict tracks
with autocast(dtype=dtype):
pred_track, pred_vis, pred_score = predict_tracks(
cfg.query_method,
cfg.max_query_pts,
track_predictor,
images,
fmaps_for_tracker,
query_frame_indexes,
frame_num,
device,
cfg,
)
if cfg.comple_nonvis:
pred_track, pred_vis, pred_score = comple_nonvis_frames(
track_predictor,
images,
fmaps_for_tracker,
frame_num,
device,
pred_track,
pred_vis,
pred_score,
500,
cfg=cfg,
)
torch.cuda.empty_cache()
# If necessary, force all the predictions at the padding areas as non-visible
if crop_params is not None:
boundaries = crop_params[:, :, -4:-2].abs().to(device)
boundaries = torch.cat([boundaries, reshaped_image.shape[-1] - boundaries], dim=-1)
hvis = torch.logical_and(
pred_track[..., 1] >= boundaries[:, :, 1:2], pred_track[..., 1] <= boundaries[:, :, 3:4]
)
wvis = torch.logical_and(
pred_track[..., 0] >= boundaries[:, :, 0:1], pred_track[..., 0] <= boundaries[:, :, 2:3]
)
force_vis = torch.logical_and(hvis, wvis)
pred_vis = pred_vis * force_vis.float()
# TODO: plot 2D matches
if cfg.use_poselib:
estimate_preliminary_cameras_fn = estimate_preliminary_cameras_poselib
else:
estimate_preliminary_cameras_fn = estimate_preliminary_cameras
# Estimate preliminary_cameras by recovering fundamental/essential/homography matrix from 2D matches
# By default, we use fundamental matrix estimation with 7p/8p+LORANSAC
# All the operations are batched and differentiable (if necessary)
# except when you enable use_poselib to save GPU memory
_, preliminary_dict = estimate_preliminary_cameras_fn(
pred_track,
pred_vis,
width,
height,
tracks_score=pred_score,
max_error=cfg.fmat_thres,
loopresidual=True,
# max_ransac_iters=cfg.max_ransac_iters,
)
pose_predictions = camera_predictor(reshaped_image, batch_size=batch_num)
pred_cameras = pose_predictions["pred_cameras"]
# Conduct Triangulation and Bundle Adjustment
(
BA_cameras_PT3D,
extrinsics_opencv,
intrinsics_opencv,
points3D,
points3D_rgb,
reconstruction,
valid_frame_mask,
) = triangulator(
pred_cameras,
pred_track,
pred_vis,
images,
preliminary_dict,
image_paths=image_paths,
crop_params=crop_params,
pred_score=pred_score,
fmat_thres=cfg.fmat_thres,
BA_iters=cfg.BA_iters,
max_reproj_error = cfg.max_reproj_error,
init_max_reproj_error=cfg.init_max_reproj_error,
cfg=cfg,
)
if cfg.center_order:
# NOTE we changed the image order previously, now we need to switch it back
BA_cameras_PT3D = BA_cameras_PT3D[center_order]
extrinsics_opencv = extrinsics_opencv[center_order]
intrinsics_opencv = intrinsics_opencv[center_order]
predictions["pred_cameras_PT3D"] = BA_cameras_PT3D
predictions["extrinsics_opencv"] = extrinsics_opencv
predictions["intrinsics_opencv"] = intrinsics_opencv
predictions["points3D"] = points3D
predictions["points3D_rgb"] = points3D_rgb
predictions["reconstruction"] = reconstruction
return predictions
def predict_tracks(
query_method,
max_query_pts,
track_predictor,
images,
fmaps_for_tracker,
query_frame_indexes,
frame_num,
device,
cfg=None,
):
pred_track_list = []
pred_vis_list = []
pred_score_list = []
for query_index in query_frame_indexes:
print(f"Predicting tracks with query_index = {query_index}")
# Find query_points at the query frame
query_points = get_query_points(images[:, query_index], query_method, max_query_pts)
# Switch so that query_index frame stays at the first frame
# This largely simplifies the code structure of tracker
new_order = calculate_index_mappings(query_index, frame_num, device=device)
images_feed, fmaps_feed = switch_tensor_order([images, fmaps_for_tracker], new_order)
# Feed into track predictor
fine_pred_track, _, pred_vis, pred_score = track_predictor(images_feed, query_points, fmaps=fmaps_feed)
# Switch back the predictions
fine_pred_track, pred_vis, pred_score = switch_tensor_order([fine_pred_track, pred_vis, pred_score], new_order)
# Append predictions for different queries
pred_track_list.append(fine_pred_track)
pred_vis_list.append(pred_vis)
pred_score_list.append(pred_score)
pred_track = torch.cat(pred_track_list, dim=2)
pred_vis = torch.cat(pred_vis_list, dim=2)
pred_score = torch.cat(pred_score_list, dim=2)
return pred_track, pred_vis, pred_score
def comple_nonvis_frames(
track_predictor,
images,
fmaps_for_tracker,
frame_num,
device,
pred_track,
pred_vis,
pred_score,
min_vis=500,
cfg=None,
):
# if a frame has too few visible inlier, use it as a query
non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
last_query = -1
while len(non_vis_frames) > 0:
print("Processing non visible frames")
print(non_vis_frames)
if non_vis_frames[0] == last_query:
print("The non vis frame still does not has enough 2D matches")
pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
"sp+sift+aliked",
cfg.max_query_pts // 2,
track_predictor,
images,
fmaps_for_tracker,
non_vis_frames,
frame_num,
device,
cfg,
)
# concat predictions
pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
break
non_vis_query_list = [non_vis_frames[0]]
last_query = non_vis_frames[0]
pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
cfg.query_method,
cfg.max_query_pts,
track_predictor,
images,
fmaps_for_tracker,
non_vis_query_list,
frame_num,
device,
cfg,
)
# concat predictions
pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
return pred_track, pred_vis, pred_score
def find_query_frame_indexes(reshaped_image, camera_predictor, query_frame_num, image_size=336):
# Downsample image to image_size x image_size
# because we found it is unnecessary to use high resolution
rgbs = F.interpolate(reshaped_image, (image_size, image_size), mode="bilinear", align_corners=True)
rgbs = camera_predictor._resnet_normalize_image(rgbs)
# Get the image features (patch level)
frame_feat = camera_predictor.backbone(rgbs, is_training=True)
frame_feat = frame_feat["x_norm_patchtokens"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
# Compute the similiarty matrix
frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
similarity_matrix = torch.bmm(frame_feat_norm, frame_feat_norm.transpose(-1, -2))
similarity_matrix = similarity_matrix.mean(dim=0)
distance_matrix = 1 - similarity_matrix.clone()
# Ignore self-pairing
similarity_matrix.fill_diagonal_(0)
similarity_sum = similarity_matrix.sum(dim=1)
# Find the most common frame
most_common_frame_index = torch.argmax(similarity_sum).item()
# Conduct FPS sampling
# Starting from the most_common_frame_index,
# try to find the farthest frame,
# then the farthest to the last found frame
# (frames are not allowed to be found twice)
fps_idx = farthest_point_sampling(distance_matrix, query_frame_num, most_common_frame_index)
return fps_idx
def get_query_points(query_image, query_method, max_query_num=4096, det_thres=0.005):
# Run superpoint and sift on the target frame
# Feel free to modify for your own
methods = query_method.split("+")
pred_points = []
for method in methods:
if "sp" in method:
extractor = SuperPoint(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
elif "sift" in method:
extractor = SIFT(max_num_keypoints=max_query_num).cuda().eval()
elif "aliked" in method:
extractor = ALIKED(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
else:
raise NotImplementedError(f"query method {method} is not supprted now")
query_points = extractor.extract(query_image)["keypoints"]
pred_points.append(query_points)
query_points = torch.cat(pred_points, dim=1)
if query_points.shape[1] > max_query_num:
random_point_indices = torch.randperm(query_points.shape[1])[:max_query_num]
query_points = query_points[:, random_point_indices, :]
return query_points
def seed_all_random_engines(seed: int) -> None:
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
if __name__ == "__main__":
with torch.no_grad():
demo_fn()