Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from huggingface_hub import InferenceClient | |
| from gtts import gTTS | |
| import os | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def generate_response(message, system_message, max_tokens, temperature, top_p): | |
| messages = [{"role": "system", "content": system_message}] | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| # Generate speech from the response text using gTTS | |
| tts = gTTS(text=response, lang='en') | |
| audio_file = "response.mp3" | |
| tts.save(audio_file) | |
| return response, audio_file | |
| st.title("Hugging Face Chatbot with Voice Response") | |
| message = st.text_input("Enter your message:") | |
| system_message = st.text_input("System message:", value="You are a friendly Chatbot.") | |
| max_tokens = st.slider("Max new tokens", 1, 2048, 512) | |
| temperature = st.slider("Temperature", 0.1, 4.0, 0.7, step=0.1) | |
| top_p = st.slider("Top-p (nucleus sampling)", 0.1, 1.0, 0.95, step=0.05) | |
| if st.button("Generate Response"): | |
| response, audio_file = generate_response(message, system_message, max_tokens, temperature, top_p) | |
| st.write(response) | |
| st.audio(audio_file) | |