David Pomerenke
commited on
Commit
·
4d13673
1
Parent(s):
92d8154
Add Dockerfile
Browse files- .dockerignore +5 -0
- Dockerfile +17 -0
- README.md +37 -0
- data/datasets.json +0 -484
- evals/backend.py +11 -11
- evals/countries.py +0 -15
- evals/main.py +12 -2
- frontend/public/README.md +0 -35
- frontend/src/App.js +6 -4
- frontend/src/components/AutoComplete.js +2 -2
- pyproject.toml +2 -0
- results.json +0 -0
- uv.lock +4 -0
.dockerignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.git
|
2 |
+
.cache
|
3 |
+
.venv
|
4 |
+
.env
|
5 |
+
frontend/node_modules
|
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM node:20-alpine AS build
|
2 |
+
WORKDIR /frontend
|
3 |
+
COPY frontend/package.json frontend/package-lock.json ./
|
4 |
+
RUN npm ci
|
5 |
+
COPY frontend/public/ public/
|
6 |
+
COPY frontend/src/ src/
|
7 |
+
RUN npm run build
|
8 |
+
|
9 |
+
FROM --platform=linux/amd64 ghcr.io/astral-sh/uv:python3.12-bookworm
|
10 |
+
WORKDIR /app
|
11 |
+
COPY pyproject.toml uv.lock ./
|
12 |
+
RUN uv sync --frozen --no-dev
|
13 |
+
COPY evals/ evals/
|
14 |
+
COPY --from=build /frontend/build /app/frontend/build
|
15 |
+
COPY results.json datasets.json ./
|
16 |
+
EXPOSE 8000
|
17 |
+
CMD ["uv", "run", "--no-dev", "evals/backend.py"]
|
README.md
CHANGED
@@ -1,3 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
[](https://huggingface.co/spaces/datenlabor-bmz/ai-language-monitor)
|
2 |
|
3 |
# AI Language Monitor 🌍
|
|
|
1 |
+
---
|
2 |
+
title: AI Language Monitor
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
+
sdk: static
|
7 |
+
license: cc-by-sa-4.0
|
8 |
+
short_description: Evaluating LLM performance across all human languages.
|
9 |
+
datasets:
|
10 |
+
- openlanguagedata/flores_plus
|
11 |
+
- google/fleurs
|
12 |
+
- mozilla-foundation/common_voice_1_0
|
13 |
+
models:
|
14 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
15 |
+
- mistralai/Mistral-Small-24B-Instruct-2501
|
16 |
+
- deepseek-ai/DeepSeek-V3
|
17 |
+
- microsoft/phi-4
|
18 |
+
- openai/whisper-large-v3
|
19 |
+
- google/gemma-3-27b-it
|
20 |
+
tags:
|
21 |
+
- leaderboard
|
22 |
+
- submission:manual
|
23 |
+
- test:public
|
24 |
+
- judge:auto
|
25 |
+
- modality:text
|
26 |
+
- modality:artefacts
|
27 |
+
- eval:generation
|
28 |
+
- language:English
|
29 |
+
- language:German
|
30 |
+
---
|
31 |
+
|
32 |
+
<!--
|
33 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
34 |
+
For tag meaning, see https://huggingface.co/spaces/leaderboards/LeaderboardsExplorer
|
35 |
+
-->
|
36 |
+
|
37 |
+
|
38 |
[](https://huggingface.co/spaces/datenlabor-bmz/ai-language-monitor)
|
39 |
|
40 |
# AI Language Monitor 🌍
|
data/datasets.json
DELETED
@@ -1,484 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"name": "FLORES+",
|
4 |
-
"author": "Meta",
|
5 |
-
"author_url": "https://ai.meta.com",
|
6 |
-
"url": "https://huggingface.co/datasets/openlanguagedata/flores_plus",
|
7 |
-
"n_languages": 200,
|
8 |
-
"tasks": [
|
9 |
-
"translation",
|
10 |
-
"classification",
|
11 |
-
"language_modeling"
|
12 |
-
],
|
13 |
-
"parallel": true,
|
14 |
-
"base": "FLORES",
|
15 |
-
"implemented": true
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"name": "FLEURS",
|
19 |
-
"author": "Meta",
|
20 |
-
"author_url": "https://ai.meta.com",
|
21 |
-
"url": "https://huggingface.co/datasets/google/fleurs",
|
22 |
-
"n_languages": 102,
|
23 |
-
"tasks": [
|
24 |
-
"speech_recognition"
|
25 |
-
],
|
26 |
-
"parallel": true,
|
27 |
-
"base": "FLORES",
|
28 |
-
"implemented": true
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"name": "CommonVoice",
|
32 |
-
"author": "Mozilla",
|
33 |
-
"author_url": "https://mozilla.ai",
|
34 |
-
"url": "https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0",
|
35 |
-
"n_languages": 124,
|
36 |
-
"tasks": [
|
37 |
-
"speech_recognition"
|
38 |
-
],
|
39 |
-
"parallel": null
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"name": "MMMLU",
|
43 |
-
"author": "OpenAI",
|
44 |
-
"author_url": "https://openai.com",
|
45 |
-
"url": "https://huggingface.co/datasets/openai/MMMLU",
|
46 |
-
"n_languages": "14",
|
47 |
-
"tasks": [
|
48 |
-
"question_answering"
|
49 |
-
],
|
50 |
-
"parallel": true,
|
51 |
-
"base": "MMLU"
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"name": "AfriMMLU",
|
55 |
-
"author": "Masakhane",
|
56 |
-
"author_url": "https://www.masakhane.io",
|
57 |
-
"url": "https://huggingface.co/datasets/masakhane/afrimmlu",
|
58 |
-
"n_languages": "17",
|
59 |
-
"tasks": [
|
60 |
-
"question_answering"
|
61 |
-
],
|
62 |
-
"parallel": true,
|
63 |
-
"base": "MMLU"
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"name": "Okapi MMLU",
|
67 |
-
"author": "Academic",
|
68 |
-
"author_url": null,
|
69 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_mmlu",
|
70 |
-
"n_languages": 16,
|
71 |
-
"tasks": [
|
72 |
-
"question_answering"
|
73 |
-
],
|
74 |
-
"parallel": true,
|
75 |
-
"base": "MMLU"
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"name": "MMLU-X",
|
79 |
-
"author": "OpenGPT-X",
|
80 |
-
"author_url": null,
|
81 |
-
"url": "https://huggingface.co/datasets/openGPT-X/mmlux",
|
82 |
-
"n_languages": 20,
|
83 |
-
"tasks": [
|
84 |
-
"question_answering"
|
85 |
-
],
|
86 |
-
"parallel": true,
|
87 |
-
"base": "MMLU"
|
88 |
-
},
|
89 |
-
{
|
90 |
-
"name": "Global MMLU",
|
91 |
-
"author": "Cohere",
|
92 |
-
"author_url": "https://cohere.com",
|
93 |
-
"url": "https://huggingface.co/datasets/CohereForAI/Global-MMLU",
|
94 |
-
"n_languages": 42,
|
95 |
-
"tasks": [
|
96 |
-
"question_answering"
|
97 |
-
],
|
98 |
-
"parallel": true,
|
99 |
-
"base": "MMLU"
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"name": "MGSM",
|
103 |
-
"author": "Google",
|
104 |
-
"author_url": "https://google.com",
|
105 |
-
"url": "https://huggingface.co/datasets/juletxara/mgsm",
|
106 |
-
"n_languages": 10,
|
107 |
-
"tasks": [
|
108 |
-
"math"
|
109 |
-
],
|
110 |
-
"parallel": true,
|
111 |
-
"base": "MGSM"
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"name": "AfriMGSM",
|
115 |
-
"author": "Masakhane",
|
116 |
-
"author_url": "https://www.masakhane.io",
|
117 |
-
"url": "https://huggingface.co/datasets/masakhane/afrimgsm",
|
118 |
-
"n_languages": 18,
|
119 |
-
"tasks": [
|
120 |
-
"math"
|
121 |
-
],
|
122 |
-
"parallel": true,
|
123 |
-
"base": "MGSM"
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"name": "GSM8K-X",
|
127 |
-
"author": "OpenGPT-X",
|
128 |
-
"author_url": null,
|
129 |
-
"url": "https://huggingface.co/datasets/openGPT-X/gsm8kx",
|
130 |
-
"n_languages": 20,
|
131 |
-
"tasks": [
|
132 |
-
"math"
|
133 |
-
],
|
134 |
-
"parallel": true,
|
135 |
-
"base": "MGSM"
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"name": "Okapi ARC Challenge",
|
139 |
-
"author": "Academic",
|
140 |
-
"author_url": null,
|
141 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_arc_challenge",
|
142 |
-
"n_languages": 31,
|
143 |
-
"tasks": [
|
144 |
-
"question_answering"
|
145 |
-
],
|
146 |
-
"parallel": true,
|
147 |
-
"base": "AI2 ARC"
|
148 |
-
},
|
149 |
-
{
|
150 |
-
"name": "Uhuru ARC Easy",
|
151 |
-
"author": "Masakhane",
|
152 |
-
"author_url": "https://www.masakhane.io",
|
153 |
-
"url": "https://huggingface.co/datasets/masakhane/uhura-arc-easy",
|
154 |
-
"n_languages": 6,
|
155 |
-
"tasks": [
|
156 |
-
"question_answering"
|
157 |
-
],
|
158 |
-
"parallel": true,
|
159 |
-
"base": "AI2 ARC"
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"name": "Arc-X",
|
163 |
-
"author": "OpenGPT-X",
|
164 |
-
"author_url": null,
|
165 |
-
"url": "https://huggingface.co/datasets/openGPT-X/arcx",
|
166 |
-
"n_languages": 20,
|
167 |
-
"tasks": [
|
168 |
-
"question_answering"
|
169 |
-
],
|
170 |
-
"parallel": true,
|
171 |
-
"base": "AI2 ARC"
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"name": "Okapi TruthfulQA",
|
175 |
-
"author": "Academic",
|
176 |
-
"author_url": null,
|
177 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_truthfulqa/tree/main/data",
|
178 |
-
"n_languages": 31,
|
179 |
-
"tasks": [
|
180 |
-
"question_answering"
|
181 |
-
],
|
182 |
-
"parallel": true,
|
183 |
-
"base": "TruthfulQA"
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"name": "Uhura TruthfulQA",
|
187 |
-
"author": "Masakhane",
|
188 |
-
"author_url": "https://www.masakhane.io",
|
189 |
-
"url": "https://huggingface.co/datasets/masakhane/uhura-truthfulqa",
|
190 |
-
"n_languages": 6,
|
191 |
-
"tasks": [
|
192 |
-
"question_answering"
|
193 |
-
],
|
194 |
-
"parallel": true,
|
195 |
-
"base": "TruthfulQA"
|
196 |
-
},
|
197 |
-
{
|
198 |
-
"name": "TruthfulQA-X",
|
199 |
-
"author": "OpenGPT-X",
|
200 |
-
"author_url": null,
|
201 |
-
"url": "https://huggingface.co/datasets/openGPT-X/truthfulqax",
|
202 |
-
"n_languages": 20,
|
203 |
-
"tasks": [
|
204 |
-
"question_answering"
|
205 |
-
],
|
206 |
-
"parallel": true,
|
207 |
-
"base": "TruthfulQA"
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"name": "XNLI",
|
211 |
-
"author": "Meta",
|
212 |
-
"author_url": "https://ai.meta.com",
|
213 |
-
"url": "https://huggingface.co/datasets/facebook/xnli",
|
214 |
-
"n_languages": 14,
|
215 |
-
"tasks": [
|
216 |
-
"classification"
|
217 |
-
],
|
218 |
-
"parallel": true,
|
219 |
-
"base": "XNLI"
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"name": "AfriXNLI",
|
223 |
-
"author": "Masakhane",
|
224 |
-
"author_url": "https://www.masakhane.io",
|
225 |
-
"url": "https://huggingface.co/datasets/masakhane/afrixnli",
|
226 |
-
"n_languages": 18,
|
227 |
-
"tasks": [
|
228 |
-
"classification"
|
229 |
-
],
|
230 |
-
"parallel": true,
|
231 |
-
"base": "XNLI"
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"name": "Okapi HellaSwag",
|
235 |
-
"author": "Academic",
|
236 |
-
"author_url": null,
|
237 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_hellaswag",
|
238 |
-
"n_languages": 31,
|
239 |
-
"tasks": [
|
240 |
-
"question_answering"
|
241 |
-
],
|
242 |
-
"parallel": true,
|
243 |
-
"base": "HellaSwag"
|
244 |
-
},
|
245 |
-
{
|
246 |
-
"name": "HellaSwag-X",
|
247 |
-
"author": "OpenGPT-X",
|
248 |
-
"author_url": null,
|
249 |
-
"url": "https://huggingface.co/datasets/openGPT-X/hellaswagx",
|
250 |
-
"n_languages": 20,
|
251 |
-
"tasks": [
|
252 |
-
"question_answering"
|
253 |
-
],
|
254 |
-
"parallel": true,
|
255 |
-
"base": "HellaSwag"
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"name": "WikiANN / PAN-X",
|
259 |
-
"author": "Academic",
|
260 |
-
"author_url": null,
|
261 |
-
"url": "https://huggingface.co/datasets/unimelb-nlp/wikiann",
|
262 |
-
"n_languages": 176,
|
263 |
-
"tasks": [
|
264 |
-
"ner"
|
265 |
-
],
|
266 |
-
"parallel": false
|
267 |
-
},
|
268 |
-
{
|
269 |
-
"name": "MSVAMP",
|
270 |
-
"author": "Microsoft",
|
271 |
-
"author_url": "https://microsoft.ai",
|
272 |
-
"url": "https://huggingface.co/datasets/Mathoctopus/MSVAMP",
|
273 |
-
"n_languages": 10,
|
274 |
-
"tasks": [
|
275 |
-
"math"
|
276 |
-
],
|
277 |
-
"parallel": true
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"name": "XLSUM",
|
281 |
-
"author": "Academic",
|
282 |
-
"author_url": null,
|
283 |
-
"url": "https://huggingface.co/datasets/csebuetnlp/xlsum",
|
284 |
-
"n_languages": 45,
|
285 |
-
"tasks": [
|
286 |
-
"summarization"
|
287 |
-
],
|
288 |
-
"parallel": true
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"name": "SEA-IFEVAL",
|
292 |
-
"author": "AI Singapore",
|
293 |
-
"author_url": "https://aisingapore.org",
|
294 |
-
"url": "https://huggingface.co/datasets/aisingapore/instruction_following-ifeval",
|
295 |
-
"n_languages": 7,
|
296 |
-
"tasks": [
|
297 |
-
"instruction_following"
|
298 |
-
],
|
299 |
-
"parallel": true,
|
300 |
-
"base": "IFEVAL"
|
301 |
-
},
|
302 |
-
{
|
303 |
-
"name": "XTREME",
|
304 |
-
"author": "Google",
|
305 |
-
"author_url": "https://google.com",
|
306 |
-
"url": "https://huggingface.co/datasets/google/xtreme",
|
307 |
-
"n_languages": 40,
|
308 |
-
"tasks": [
|
309 |
-
"translation",
|
310 |
-
"classification",
|
311 |
-
"question_answering",
|
312 |
-
"ner"
|
313 |
-
],
|
314 |
-
"parallel": null
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"name": "XGLUE",
|
318 |
-
"author": "Microsoft",
|
319 |
-
"author_url": "https://microsoft.ai",
|
320 |
-
"url": "https://huggingface.co/datasets/microsoft/xglue",
|
321 |
-
"n_languages": 18,
|
322 |
-
"tasks": [
|
323 |
-
"pos"
|
324 |
-
],
|
325 |
-
"parallel": null,
|
326 |
-
"base": "GLUE"
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"name": "IndicGLUE",
|
330 |
-
"author": "AI4Bharat",
|
331 |
-
"author_url": "https://models.ai4bharat.org",
|
332 |
-
"url": "https://huggingface.co/datasets/ai4bharat/indic_glue",
|
333 |
-
"n_languages": 11,
|
334 |
-
"tasks": [
|
335 |
-
"question_answering"
|
336 |
-
],
|
337 |
-
"parallel": null,
|
338 |
-
"base": "GLUE"
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"name": "Opus Gnome",
|
342 |
-
"author": "Helsinki NLP",
|
343 |
-
"author_url": null,
|
344 |
-
"url": "https://huggingface.co/datasets/Helsinki-NLP/opus_gnome",
|
345 |
-
"n_languages": 187,
|
346 |
-
"tasks": [
|
347 |
-
"translation"
|
348 |
-
],
|
349 |
-
"parallel": true
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"name": "Opus Paracrawl",
|
353 |
-
"author": "Helsinki NLP",
|
354 |
-
"author_url": null,
|
355 |
-
"url": "https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl",
|
356 |
-
"n_languages": 43,
|
357 |
-
"tasks": [
|
358 |
-
"translation"
|
359 |
-
],
|
360 |
-
"parallel": false
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"name": "CCAligned",
|
364 |
-
"author": "Meta",
|
365 |
-
"author_url": "https://ai.meta.com",
|
366 |
-
"url": "https://huggingface.co/datasets/ahelk/ccaligned_multilingual",
|
367 |
-
"n_languages": 137,
|
368 |
-
"tasks": [
|
369 |
-
"translation"
|
370 |
-
],
|
371 |
-
"parallel": false
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"name": "OPUS Collection",
|
375 |
-
"author": "Helsinki NLP",
|
376 |
-
"author_url": null,
|
377 |
-
"url": "https://opus.nlpl.eu",
|
378 |
-
"n_languages": 747,
|
379 |
-
"tasks": [
|
380 |
-
"translation"
|
381 |
-
],
|
382 |
-
"parallel": false
|
383 |
-
},
|
384 |
-
{
|
385 |
-
"name": "MasakhaNER",
|
386 |
-
"author": "Masakhane",
|
387 |
-
"author_url": "https://www.masakhane.io",
|
388 |
-
"url": "https://huggingface.co/datasets/masakhane/masakhaner",
|
389 |
-
"n_languages": 10,
|
390 |
-
"tasks": [
|
391 |
-
"ner"
|
392 |
-
],
|
393 |
-
"parallel": null
|
394 |
-
},
|
395 |
-
{
|
396 |
-
"name": "Multilingual Sentiments",
|
397 |
-
"author": "Academic",
|
398 |
-
"author_url": null,
|
399 |
-
"url": "https://huggingface.co/datasets/tyqiangz/multilingual-sentiments",
|
400 |
-
"n_languages": 12,
|
401 |
-
"tasks": [
|
402 |
-
"sentiment_analysis"
|
403 |
-
],
|
404 |
-
"parallel": null
|
405 |
-
},
|
406 |
-
{
|
407 |
-
"name": "CulturaX",
|
408 |
-
"author": "Academic",
|
409 |
-
"author_url": null,
|
410 |
-
"url": "https://huggingface.co/datasets/uonlp/CulturaX",
|
411 |
-
"n_languages": 167,
|
412 |
-
"tasks": [
|
413 |
-
"language_modeling"
|
414 |
-
],
|
415 |
-
"parallel": false
|
416 |
-
},
|
417 |
-
{
|
418 |
-
"name": "Tülu 3 SFT Mixture",
|
419 |
-
"author": "AllenAI",
|
420 |
-
"author_url": "https://allenai.org",
|
421 |
-
"url": "https://huggingface.co/datasets/allenai/tulu-3-sft-mixture",
|
422 |
-
"n_languages": 70,
|
423 |
-
"tasks": [
|
424 |
-
"instruction_following"
|
425 |
-
],
|
426 |
-
"parallel": false
|
427 |
-
},
|
428 |
-
{
|
429 |
-
"name": "xP3",
|
430 |
-
"author": "BigScience",
|
431 |
-
"author_url": "https://bigscience.huggingface.co",
|
432 |
-
"url": "https://huggingface.co/datasets/bigscience/xP3",
|
433 |
-
"n_languages": 46,
|
434 |
-
"tasks": [
|
435 |
-
"instruction_following"
|
436 |
-
],
|
437 |
-
"parallel": false
|
438 |
-
},
|
439 |
-
{
|
440 |
-
"name": "Aya",
|
441 |
-
"author": "Cohere",
|
442 |
-
"author_url": "https://cohere.com",
|
443 |
-
"url": "https://huggingface.co/datasets/CohereForAI/aya_dataset",
|
444 |
-
"n_languages": 65,
|
445 |
-
"tasks": [
|
446 |
-
"instruction_following"
|
447 |
-
],
|
448 |
-
"parallel": null
|
449 |
-
},
|
450 |
-
{
|
451 |
-
"name": "Lanfrica",
|
452 |
-
"author": "Lanfrica",
|
453 |
-
"author_url": "https://lanfrica.com",
|
454 |
-
"url": "https://lanfrica.com/records?language=yor&task=machine%20translation",
|
455 |
-
"n_languages": 2200,
|
456 |
-
"tasks": [
|
457 |
-
"datasets"
|
458 |
-
],
|
459 |
-
"parallel": null
|
460 |
-
},
|
461 |
-
{
|
462 |
-
"name": "HuggingFace Languages",
|
463 |
-
"author": "HuggingFace",
|
464 |
-
"author_url": "https://huggingface.co",
|
465 |
-
"url": "https://huggingface.co/languages",
|
466 |
-
"n_languages": 4680,
|
467 |
-
"tasks": [
|
468 |
-
"datasets",
|
469 |
-
"models"
|
470 |
-
],
|
471 |
-
"parallel": null
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"name": "HuggingFace Multilingual Datasets",
|
475 |
-
"author": "HuggingFace",
|
476 |
-
"author_url": "https://huggingface.co",
|
477 |
-
"url": "https://huggingface.co/datasets?other=multilinguality:multilingual",
|
478 |
-
"n_languages": 2012,
|
479 |
-
"tasks": [
|
480 |
-
"datasets"
|
481 |
-
],
|
482 |
-
"parallel": false
|
483 |
-
}
|
484 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evals/backend.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import json
|
2 |
-
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import uvicorn
|
@@ -9,10 +9,14 @@ from fastapi.middleware.gzip import GZipMiddleware
|
|
9 |
from fastapi.responses import JSONResponse
|
10 |
from fastapi.staticfiles import StaticFiles
|
11 |
|
12 |
-
from languages import languages
|
13 |
-
from models import models
|
14 |
from countries import make_country_table
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def mean(lst):
|
17 |
return sum(lst) / len(lst) if lst else None
|
18 |
|
@@ -30,7 +34,6 @@ def make_model_table(df, models):
|
|
30 |
df["average"] = df[task_metrics].mean(axis=1)
|
31 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
32 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
33 |
-
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
34 |
df["rank"] = df.index + 1
|
35 |
df = df[
|
36 |
[
|
@@ -85,9 +88,6 @@ app = FastAPI()
|
|
85 |
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
86 |
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
87 |
|
88 |
-
with open("results.json", "r") as f:
|
89 |
-
results = pd.DataFrame(json.load(f))
|
90 |
-
|
91 |
|
92 |
def serialize(df):
|
93 |
return df.replace({np.nan: None}).to_dict(orient="records")
|
@@ -99,11 +99,11 @@ async def data(request: Request):
|
|
99 |
data = json.loads(body)
|
100 |
selected_languages = data.get("selectedLanguages", {})
|
101 |
df = (
|
102 |
-
|
103 |
)
|
104 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
105 |
language_table = make_language_table(df, languages)
|
106 |
-
datasets_df = pd.read_json("
|
107 |
if selected_languages:
|
108 |
# the filtering is only applied for the model table and the country data
|
109 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
@@ -117,7 +117,7 @@ async def data(request: Request):
|
|
117 |
}
|
118 |
return JSONResponse(content=all_tables)
|
119 |
|
120 |
-
app.mount("/", StaticFiles(directory="frontend/
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
import json
|
2 |
+
import os
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import uvicorn
|
|
|
9 |
from fastapi.responses import JSONResponse
|
10 |
from fastapi.staticfiles import StaticFiles
|
11 |
|
|
|
|
|
12 |
from countries import make_country_table
|
13 |
|
14 |
+
with open("results.json", "r") as f:
|
15 |
+
results = json.load(f)
|
16 |
+
scores = pd.DataFrame(results["scores"])
|
17 |
+
languages = pd.DataFrame(results["languages"])
|
18 |
+
models = pd.DataFrame(results["models"])
|
19 |
+
|
20 |
def mean(lst):
|
21 |
return sum(lst) / len(lst) if lst else None
|
22 |
|
|
|
34 |
df["average"] = df[task_metrics].mean(axis=1)
|
35 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
36 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
|
|
37 |
df["rank"] = df.index + 1
|
38 |
df = df[
|
39 |
[
|
|
|
88 |
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
89 |
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
def serialize(df):
|
93 |
return df.replace({np.nan: None}).to_dict(orient="records")
|
|
|
99 |
data = json.loads(body)
|
100 |
selected_languages = data.get("selectedLanguages", {})
|
101 |
df = (
|
102 |
+
scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
103 |
)
|
104 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
105 |
language_table = make_language_table(df, languages)
|
106 |
+
datasets_df = pd.read_json("datasets.json")
|
107 |
if selected_languages:
|
108 |
# the filtering is only applied for the model table and the country data
|
109 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
|
|
117 |
}
|
118 |
return JSONResponse(content=all_tables)
|
119 |
|
120 |
+
app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))
|
evals/countries.py
CHANGED
@@ -1,26 +1,11 @@
|
|
1 |
import re
|
2 |
-
import xml.etree.ElementTree as ET
|
3 |
from collections import defaultdict
|
4 |
from joblib.memory import Memory
|
5 |
import pandas as pd
|
6 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
7 |
-
from language_data.util import data_filename
|
8 |
|
9 |
cache = Memory(location=".cache", verbose=0).cache
|
10 |
|
11 |
-
@cache
|
12 |
-
def get_population_data():
|
13 |
-
filename = data_filename("supplementalData.xml")
|
14 |
-
root = ET.fromstring(open(filename).read())
|
15 |
-
territories = root.findall("./territoryInfo/territory")
|
16 |
-
|
17 |
-
data = {}
|
18 |
-
for territory in territories:
|
19 |
-
t_code = territory.attrib["type"]
|
20 |
-
t_population = float(territory.attrib["population"])
|
21 |
-
data[t_code] = t_population
|
22 |
-
return data
|
23 |
-
|
24 |
|
25 |
def population(bcp_47):
|
26 |
items = {
|
|
|
1 |
import re
|
|
|
2 |
from collections import defaultdict
|
3 |
from joblib.memory import Memory
|
4 |
import pandas as pd
|
5 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
|
|
6 |
|
7 |
cache = Memory(location=".cache", verbose=0).cache
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def population(bcp_47):
|
11 |
items = {
|
evals/main.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
import asyncio
|
2 |
import json
|
3 |
|
|
|
|
|
|
|
|
|
4 |
from languages import languages
|
5 |
from models import model_fast, models
|
6 |
from tasks import tasks
|
7 |
-
from tqdm.asyncio import tqdm_asyncio
|
8 |
|
9 |
# ===== config =====
|
10 |
|
@@ -33,11 +36,18 @@ async def evaluate():
|
|
33 |
]
|
34 |
return await tqdm_asyncio.gather(*results, miniters=1)
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
async def main():
|
|
|
39 |
results = await evaluate()
|
40 |
results = [r for group in results for r in group]
|
|
|
|
|
|
|
|
|
|
|
41 |
with open("results.json", "w") as f:
|
42 |
json.dump(results, f, indent=2, ensure_ascii=False)
|
43 |
|
|
|
1 |
import asyncio
|
2 |
import json
|
3 |
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from tqdm.asyncio import tqdm_asyncio
|
7 |
+
|
8 |
from languages import languages
|
9 |
from models import model_fast, models
|
10 |
from tasks import tasks
|
|
|
11 |
|
12 |
# ===== config =====
|
13 |
|
|
|
36 |
]
|
37 |
return await tqdm_asyncio.gather(*results, miniters=1)
|
38 |
|
39 |
+
def serialize(df):
|
40 |
+
return df.replace({np.nan: None, pd.NA: None}).to_dict(orient="records")
|
41 |
|
42 |
async def main():
|
43 |
+
models["creation_date"] = models["creation_date"].apply(lambda x: x.isoformat())
|
44 |
results = await evaluate()
|
45 |
results = [r for group in results for r in group]
|
46 |
+
results = {
|
47 |
+
"languages": serialize(languages),
|
48 |
+
"models": serialize(models),
|
49 |
+
"scores": results,
|
50 |
+
}
|
51 |
with open("results.json", "w") as f:
|
52 |
json.dump(results, f, indent=2, ensure_ascii=False)
|
53 |
|
frontend/public/README.md
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: AI Language Monitor
|
3 |
-
emoji: 🌍
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: pink
|
6 |
-
sdk: static
|
7 |
-
license: cc-by-sa-4.0
|
8 |
-
short_description: Evaluating LLM performance across all human languages.
|
9 |
-
datasets:
|
10 |
-
- openlanguagedata/flores_plus
|
11 |
-
- google/fleurs
|
12 |
-
- mozilla-foundation/common_voice_1_0
|
13 |
-
models:
|
14 |
-
- meta-llama/Llama-3.3-70B-Instruct
|
15 |
-
- mistralai/Mistral-Small-24B-Instruct-2501
|
16 |
-
- deepseek-ai/DeepSeek-V3
|
17 |
-
- microsoft/phi-4
|
18 |
-
- openai/whisper-large-v3
|
19 |
-
- google/gemma-3-27b-it
|
20 |
-
tags:
|
21 |
-
- leaderboard
|
22 |
-
- submission:manual
|
23 |
-
- test:public
|
24 |
-
- judge:auto
|
25 |
-
- modality:text
|
26 |
-
- modality:artefacts
|
27 |
-
- eval:generation
|
28 |
-
- language:English
|
29 |
-
- language:German
|
30 |
-
---
|
31 |
-
|
32 |
-
<!--
|
33 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
34 |
-
For tag meaning, see https://huggingface.co/spaces/leaderboards/LeaderboardsExplorer
|
35 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frontend/src/App.js
CHANGED
@@ -62,10 +62,12 @@ function App () {
|
|
62 |
<p style={{ fontSize: '1.15rem', color: '#555', marginTop: '0' }}>
|
63 |
Tracking language proficiency of AI models for every language
|
64 |
</p>
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
</header>
|
70 |
<main
|
71 |
style={{
|
|
|
62 |
<p style={{ fontSize: '1.15rem', color: '#555', marginTop: '0' }}>
|
63 |
Tracking language proficiency of AI models for every language
|
64 |
</p>
|
65 |
+
{data && (
|
66 |
+
<AutoComplete
|
67 |
+
languages={data?.language_table}
|
68 |
+
onComplete={items => setSelectedLanguages(items)}
|
69 |
+
/>
|
70 |
+
)}
|
71 |
</header>
|
72 |
<main
|
73 |
style={{
|
frontend/src/components/AutoComplete.js
CHANGED
@@ -5,8 +5,8 @@ const AutoComplete = ({ languages, onComplete }) => {
|
|
5 |
const [suggestions, setSuggestions] = useState([])
|
6 |
|
7 |
const exampleCodes = ['de', 'fr', 'ar', 'hi', 'sw', 'fa']
|
8 |
-
const exampleLanguages =
|
9 |
-
|
10 |
)
|
11 |
|
12 |
const search = e => {
|
|
|
5 |
const [suggestions, setSuggestions] = useState([])
|
6 |
|
7 |
const exampleCodes = ['de', 'fr', 'ar', 'hi', 'sw', 'fa']
|
8 |
+
const exampleLanguages = exampleCodes.map(code =>
|
9 |
+
languages?.find(item => item.bcp_47 === code)
|
10 |
)
|
11 |
|
12 |
const search = e => {
|
pyproject.toml
CHANGED
@@ -9,6 +9,8 @@ dependencies = [
|
|
9 |
"uvicorn>=0.34.0",
|
10 |
"pandas>=2.2.3",
|
11 |
"numpy>=2.1.2",
|
|
|
|
|
12 |
]
|
13 |
|
14 |
[tool.uv]
|
|
|
9 |
"uvicorn>=0.34.0",
|
10 |
"pandas>=2.2.3",
|
11 |
"numpy>=2.1.2",
|
12 |
+
"joblib>=1.4.2",
|
13 |
+
"language-data>=1.3.0",
|
14 |
]
|
15 |
|
16 |
[tool.uv]
|
results.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
uv.lock
CHANGED
@@ -845,6 +845,8 @@ version = "0.1.0"
|
|
845 |
source = { virtual = "." }
|
846 |
dependencies = [
|
847 |
{ name = "fastapi" },
|
|
|
|
|
848 |
{ name = "numpy" },
|
849 |
{ name = "pandas" },
|
850 |
{ name = "uvicorn" },
|
@@ -874,6 +876,8 @@ dev = [
|
|
874 |
[package.metadata]
|
875 |
requires-dist = [
|
876 |
{ name = "fastapi", specifier = ">=0.115.8" },
|
|
|
|
|
877 |
{ name = "numpy", specifier = ">=2.1.2" },
|
878 |
{ name = "pandas", specifier = ">=2.2.3" },
|
879 |
{ name = "uvicorn", specifier = ">=0.34.0" },
|
|
|
845 |
source = { virtual = "." }
|
846 |
dependencies = [
|
847 |
{ name = "fastapi" },
|
848 |
+
{ name = "joblib" },
|
849 |
+
{ name = "language-data" },
|
850 |
{ name = "numpy" },
|
851 |
{ name = "pandas" },
|
852 |
{ name = "uvicorn" },
|
|
|
876 |
[package.metadata]
|
877 |
requires-dist = [
|
878 |
{ name = "fastapi", specifier = ">=0.115.8" },
|
879 |
+
{ name = "joblib", specifier = ">=1.4.2" },
|
880 |
+
{ name = "language-data", specifier = ">=1.3.0" },
|
881 |
{ name = "numpy", specifier = ">=2.1.2" },
|
882 |
{ name = "pandas", specifier = ">=2.2.3" },
|
883 |
{ name = "uvicorn", specifier = ">=0.34.0" },
|