import random from collections import Counter, defaultdict from langcodes import Language, standardize_tag from rich import print from models import translate_google, google_supported_languages from tqdm import tqdm from datasets import Dataset, load_dataset import asyncio from tqdm.asyncio import tqdm_asyncio import os from datasets_.util import _get_dataset_config_names, _load_dataset slug_uhura_arc_easy = "masakhane/uhura-arc-easy" tags_uhura_arc_easy = { standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_arc_easy) if not a.endswith("unmatched") } random.seed(42) id_sets_train = [set(_load_dataset(slug_uhura_arc_easy, tag, split="train")["id"]) for tag in tags_uhura_arc_easy.values()] common_ids_train = list(sorted(set.intersection(*id_sets_train))) random.shuffle(common_ids_train) id_sets_test = [set(_load_dataset(slug_uhura_arc_easy, tag, split="test")["id"]) for tag in tags_uhura_arc_easy.values()] common_ids_test = list(sorted(set.intersection(*id_sets_test))) random.shuffle(common_ids_test) slug_uhura_arc_easy_translated = "fair-forward/arc-easy-autotranslated" tags_uhura_arc_easy_translated = { standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_arc_easy_translated) } def add_choices(row): row["choices"] = row["choices"]["text"] return row def load_uhura_arc_easy(language_bcp_47, nr): if language_bcp_47 in tags_uhura_arc_easy.keys(): ds = _load_dataset(slug_uhura_arc_easy, tags_uhura_arc_easy[language_bcp_47]) ds = ds.map(add_choices) ds = ds.rename_column("answerKey", "answer") train_ids = common_ids_train[nr:nr+3] examples = ds["train"].filter(lambda x: x["id"] in train_ids) task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0] return "masakhane/uhura-arc-easy", examples, task if language_bcp_47 in tags_uhura_arc_easy_translated.keys(): ds = _load_dataset(slug_uhura_arc_easy_translated, tags_uhura_arc_easy_translated[language_bcp_47]) ds = ds.rename_column("answerKey", "answer") train_ids = common_ids_train[nr:nr+3] examples = ds["train"].filter(lambda x: x["id"] in train_ids) # raise Exception(language_bcp_47) task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0] return "fair-forward/arc-easy-autotranslated", examples, task else: return None, None, None def translate_arc(languages): human_translated = tags_uhura_arc_easy.keys() untranslated = [ lang for lang in languages["bcp_47"].values[:100] if lang not in human_translated and lang in google_supported_languages ] n_samples = 10 train_ids = common_ids_train[:n_samples+3] en_train = _load_dataset(slug_uhura_arc_easy, subset=tags_uhura_arc_easy["en"], split="train") en_train = en_train.filter(lambda x: x["id"] in train_ids) test_ids = common_ids_test[:n_samples] en_test = _load_dataset(slug_uhura_arc_easy, subset=tags_uhura_arc_easy["en"], split="test") en_test = en_test.filter(lambda x: x["id"] in test_ids) data = {"train": en_train, "test": en_test} slug = "fair-forward/arc-easy-autotranslated" for lang in tqdm(untranslated): # check if already exists on hub try: ds_lang = load_dataset(slug, lang) except (ValueError, Exception): print(f"Translating {lang}...") for split, data_en in data.items(): questions_tr = [translate_google(q, "en", lang) for q in data_en["question"]] questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr)) choices_texts_concatenated = [] for choice in data_en["choices"]: for option in choice["text"]: choices_texts_concatenated.append(option) choices_tr = [translate_google(c, "en", lang) for c in choices_texts_concatenated] choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr)) # group into chunks of 4 choices_tr = [choices_tr[i:i+4] for i in range(0, len(choices_tr), 4)] ds_lang = Dataset.from_dict( { "id": data_en["id"], "question": questions_tr, "choices": choices_tr, "answerKey": data_en["answerKey"], } ) ds_lang.push_to_hub( slug, split=split, config_name=lang, token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"), ) ds_lang.to_json( f"data/translations/arc/{lang}_{split}.json", lines=False, force_ascii=False, indent=2 )