Spaces:
Running
on
Zero
Running
on
Zero
fancyfeast
commited on
Commit
·
2fb728d
1
Parent(s):
0ba5137
Initial commit
Browse files- app.py +199 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer
|
| 4 |
+
import torch
|
| 5 |
+
import torch.amp.autocast_mode
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torchvision.transforms.functional as TVF
|
| 8 |
+
from threading import Thread
|
| 9 |
+
from typing import Generator
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
MODEL_PATH = "fancyfeast/llama-joycaption-alpha-two-vqa-test-1"
|
| 13 |
+
TITLE = "<h1><center>JoyCaption Alpha Two - VQA Test - (2024-11-25a)</center></h1>"
|
| 14 |
+
DESCRIPTION = """
|
| 15 |
+
<div>
|
| 16 |
+
<p>🚨🚨🚨 BY USING THIS SPACE YOU AGREE THAT YOUR QUERIES (but not images) <i>MAY</i> BE LOGGED AND COLLECTED ANONYMOUSLY 🚨🚨🚨</p>
|
| 17 |
+
<p>🧪🧪🧪 This an experiment to see how well JoyCaption Alpha Two can learn to answer questions about images and follow instructions.
|
| 18 |
+
I've only finetuned it on 600 examples, so it is highly experimental, very weak, broken, and volatile. But for only training 600 examples,
|
| 19 |
+
I thought it was performing surprisingly well and wanted to share. 🧪🧪🧪</p>
|
| 20 |
+
<p>Unlike JoyCaption Alpha Two, you can ask this finetune questions about the image, like "What is he holding in his hand?", "Where might this be?",
|
| 21 |
+
and "What are they doing?". It can also follow instructions, like "Write me a poem about this image",
|
| 22 |
+
"Write a caption but don't use any ambigious language, and make sure you mention that the image is from Instagram.", and
|
| 23 |
+
"Output JSON with the following properties: 'skin_tone', 'hair_style', 'hair_length', 'clothing', 'background'." Remember that this was only finetuned on
|
| 24 |
+
600 VQA/instruction examples, so it is _very_ limited right now. Expect it to frequently fallback to its base behavior of just writing image descriptions.
|
| 25 |
+
Expect accuracy to be lower. Expect glitches. Despite that, I've found that it will follow most queries I've tested it with, even outside its training,
|
| 26 |
+
with enough coaxing and re-rolling.</p>
|
| 27 |
+
<p>About the 🚨🚨🚨 above: this space will log all prompts sent to it. The only thing this space logs is the text query; no images, no user data, etc.
|
| 28 |
+
I cannot see what images you send, and frankly, I don't want to. But knowing what kinds of instructions and queries users want JoyCaption to handle will
|
| 29 |
+
help guide me in building JoyCaption's VQA dataset. I've found out the hard way that almost all public VQA datasets are garbage and don't do a good job of
|
| 30 |
+
training and exercising visual understanding. Certainly not good enough to handle the complicated instructions that will allow JoyCaption users to guide and
|
| 31 |
+
direct how JoyCaption writes descriptions and captions. So I'm building my own dataset, that will be made public. So, with peace and love, this space logs the text
|
| 32 |
+
queries. As always, the model itself is completely public and free to use outside of this space. And, of course, I have no control nor access to what HuggingFace,
|
| 33 |
+
which are graciously hosting this space, log.</p>
|
| 34 |
+
</div>
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
PLACEHOLDER = """
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Load model
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True)
|
| 44 |
+
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}"
|
| 45 |
+
|
| 46 |
+
model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
|
| 47 |
+
assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}"
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]:
|
| 51 |
+
# Trim off the prompt
|
| 52 |
+
while True:
|
| 53 |
+
try:
|
| 54 |
+
i = input_ids.index(eoh_id)
|
| 55 |
+
except ValueError:
|
| 56 |
+
break
|
| 57 |
+
|
| 58 |
+
input_ids = input_ids[i + 1:]
|
| 59 |
+
|
| 60 |
+
# Trim off the end
|
| 61 |
+
try:
|
| 62 |
+
i = input_ids.index(eot_id)
|
| 63 |
+
except ValueError:
|
| 64 |
+
return input_ids
|
| 65 |
+
|
| 66 |
+
return input_ids[:i]
|
| 67 |
+
|
| 68 |
+
end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>")
|
| 69 |
+
end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 70 |
+
assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@spaces.GPU()
|
| 74 |
+
@torch.no_grad()
|
| 75 |
+
def chat_joycaption(message: dict, history, temperature: float, max_new_tokens: int) -> Generator[str, None, None]:
|
| 76 |
+
torch.cuda.empty_cache()
|
| 77 |
+
|
| 78 |
+
# Prompts are always stripped in training for now
|
| 79 |
+
prompt = message['text'].strip()
|
| 80 |
+
|
| 81 |
+
# Load image
|
| 82 |
+
if "files" not in message or len(message["files"]) != 1:
|
| 83 |
+
raise ValueError("This model requires exactly one image as input.")
|
| 84 |
+
|
| 85 |
+
image = Image.open(message["files"][0])
|
| 86 |
+
|
| 87 |
+
# Log the prompt
|
| 88 |
+
print(f"Prompt: {prompt}")
|
| 89 |
+
|
| 90 |
+
# Preprocess image
|
| 91 |
+
# NOTE: I found the default processor for so400M to have worse results than just using PIL directly
|
| 92 |
+
if image.size != (384, 384):
|
| 93 |
+
image = image.resize((384, 384), Image.LANCZOS)
|
| 94 |
+
image = image.convert("RGB")
|
| 95 |
+
pixel_values = TVF.pil_to_tensor(image)
|
| 96 |
+
|
| 97 |
+
convo = [
|
| 98 |
+
{
|
| 99 |
+
"role": "system",
|
| 100 |
+
"content": "You are a helpful image captioner.",
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"role": "user",
|
| 104 |
+
"content": prompt,
|
| 105 |
+
},
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
# Format the conversation
|
| 109 |
+
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
|
| 110 |
+
assert isinstance(convo_string, str)
|
| 111 |
+
|
| 112 |
+
# Tokenize the conversation
|
| 113 |
+
convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False)
|
| 114 |
+
|
| 115 |
+
# Repeat the image tokens
|
| 116 |
+
input_tokens = []
|
| 117 |
+
for token in convo_tokens:
|
| 118 |
+
if token == model.config.image_token_index:
|
| 119 |
+
input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length)
|
| 120 |
+
else:
|
| 121 |
+
input_tokens.append(token)
|
| 122 |
+
|
| 123 |
+
input_ids = torch.tensor(input_tokens, dtype=torch.long)
|
| 124 |
+
attention_mask = torch.ones_like(input_ids)
|
| 125 |
+
|
| 126 |
+
# Move to GPU
|
| 127 |
+
input_ids = input_ids.unsqueeze(0).to("cuda")
|
| 128 |
+
attention_mask = attention_mask.unsqueeze(0).to("cuda")
|
| 129 |
+
pixel_values = pixel_values.unsqueeze(0).to("cuda")
|
| 130 |
+
|
| 131 |
+
# Normalize the image
|
| 132 |
+
pixel_values = pixel_values / 255.0
|
| 133 |
+
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
|
| 134 |
+
pixel_values = pixel_values.to(torch.bfloat16)
|
| 135 |
+
|
| 136 |
+
generate_kwargs = dict(
|
| 137 |
+
input_ids=input_ids,
|
| 138 |
+
pixel_values=pixel_values,
|
| 139 |
+
attention_mask=attention_mask,
|
| 140 |
+
max_new_tokens=max_new_tokens,
|
| 141 |
+
do_sample=True,
|
| 142 |
+
suppress_tokens=None,
|
| 143 |
+
use_cache=True,
|
| 144 |
+
temperature=temperature,
|
| 145 |
+
top_k=None,
|
| 146 |
+
top_p=0.9,
|
| 147 |
+
streamer=streamer,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
if temperature == 0:
|
| 151 |
+
generate_kwargs["do_sample"] = False
|
| 152 |
+
|
| 153 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 154 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 155 |
+
t.start()
|
| 156 |
+
|
| 157 |
+
outputs = []
|
| 158 |
+
for text in streamer:
|
| 159 |
+
outputs.append(text)
|
| 160 |
+
yield "".join(outputs)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
| 164 |
+
|
| 165 |
+
with gr.Blocks() as demo:
|
| 166 |
+
gr.HTML(TITLE)
|
| 167 |
+
gr.Markdown(DESCRIPTION)
|
| 168 |
+
gr.ChatInterface(
|
| 169 |
+
fn=chat_joycaption,
|
| 170 |
+
chatbot=chatbot,
|
| 171 |
+
fill_height=True,
|
| 172 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 173 |
+
additional_inputs=[
|
| 174 |
+
gr.Slider(minimum=0,
|
| 175 |
+
maximum=1,
|
| 176 |
+
step=0.1,
|
| 177 |
+
value=0.6,
|
| 178 |
+
label="Temperature",
|
| 179 |
+
render=False),
|
| 180 |
+
gr.Slider(minimum=128,
|
| 181 |
+
maximum=4096,
|
| 182 |
+
step=1,
|
| 183 |
+
value=1024,
|
| 184 |
+
label="Max new tokens",
|
| 185 |
+
render=False ),
|
| 186 |
+
],
|
| 187 |
+
examples=[
|
| 188 |
+
['How to setup a human base on Mars? Give short answer.'],
|
| 189 |
+
['Explain theory of relativity to me like I’m 8 years old.'],
|
| 190 |
+
['What is 9,000 * 9,000?'],
|
| 191 |
+
['Write a pun-filled happy birthday message to my friend Alex.'],
|
| 192 |
+
['Justify why a penguin might make a good king of the jungle.']
|
| 193 |
+
],
|
| 194 |
+
cache_examples=False,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.23.4
|
| 2 |
+
accelerate
|
| 3 |
+
torch
|
| 4 |
+
transformers==4.45.2
|
| 5 |
+
sentencepiece
|
| 6 |
+
torchvision
|