Spaces:
Running
on
Zero
Running
on
Zero
Delete oldbackups
Browse files- oldbackups +0 -303
oldbackups
DELETED
@@ -1,303 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import json
|
4 |
-
import logging
|
5 |
-
import torch
|
6 |
-
from PIL import Image
|
7 |
-
import spaces
|
8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
9 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
-
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
-
import copy
|
12 |
-
import random
|
13 |
-
import time
|
14 |
-
from transformers import pipeline
|
15 |
-
|
16 |
-
# 번역 모델 초기화
|
17 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
18 |
-
|
19 |
-
# 프롬프트 처리 함수 추가
|
20 |
-
def process_prompt(prompt):
|
21 |
-
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
|
22 |
-
translated = translator(prompt)[0]['translation_text']
|
23 |
-
return prompt, translated
|
24 |
-
return prompt, prompt
|
25 |
-
|
26 |
-
KEY_JSON = os.getenv("KEY_JSON")
|
27 |
-
with open(KEY_JSON, 'r') as f:
|
28 |
-
loras = json.load(f)
|
29 |
-
|
30 |
-
# Initialize the base model
|
31 |
-
dtype = torch.bfloat16
|
32 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
-
base_model = "black-forest-labs/FLUX.1-dev"
|
34 |
-
|
35 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
36 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
37 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
38 |
-
|
39 |
-
MAX_SEED = 2**32-1
|
40 |
-
|
41 |
-
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
42 |
-
|
43 |
-
class calculateDuration:
|
44 |
-
def __init__(self, activity_name=""):
|
45 |
-
self.activity_name = activity_name
|
46 |
-
|
47 |
-
def __enter__(self):
|
48 |
-
self.start_time = time.time()
|
49 |
-
return self
|
50 |
-
|
51 |
-
def __exit__(self, exc_type, exc_value, traceback):
|
52 |
-
self.end_time = time.time()
|
53 |
-
self.elapsed_time = self.end_time - self.start_time
|
54 |
-
if self.activity_name:
|
55 |
-
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
56 |
-
else:
|
57 |
-
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
58 |
-
|
59 |
-
def update_selection(evt: gr.SelectData, width, height):
|
60 |
-
selected_lora = loras[evt.index]
|
61 |
-
new_placeholder = f"{selected_lora['title']}를 위한 프롬프트를 입력하세요"
|
62 |
-
lora_repo = selected_lora["repo"]
|
63 |
-
updated_text = f"### 선택됨: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
64 |
-
if "aspect" in selected_lora:
|
65 |
-
if selected_lora["aspect"] == "portrait":
|
66 |
-
width = 768
|
67 |
-
height = 1024
|
68 |
-
elif selected_lora["aspect"] == "landscape":
|
69 |
-
width = 1024
|
70 |
-
height = 768
|
71 |
-
else:
|
72 |
-
width = 1024
|
73 |
-
height = 1024
|
74 |
-
return (
|
75 |
-
gr.update(placeholder=new_placeholder),
|
76 |
-
updated_text,
|
77 |
-
evt.index,
|
78 |
-
width,
|
79 |
-
height,
|
80 |
-
)
|
81 |
-
|
82 |
-
@spaces.GPU(duration=70)
|
83 |
-
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
84 |
-
pipe.to("cuda")
|
85 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
86 |
-
with calculateDuration("이미지 생성"):
|
87 |
-
# Generate image
|
88 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
89 |
-
prompt=prompt_mash,
|
90 |
-
num_inference_steps=steps,
|
91 |
-
guidance_scale=cfg_scale,
|
92 |
-
width=width,
|
93 |
-
height=height,
|
94 |
-
generator=generator,
|
95 |
-
joint_attention_kwargs={"scale": lora_scale},
|
96 |
-
output_type="pil",
|
97 |
-
good_vae=good_vae,
|
98 |
-
):
|
99 |
-
yield img
|
100 |
-
|
101 |
-
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
102 |
-
if selected_index is None:
|
103 |
-
raise gr.Error("진행하기 전에 LoRA를 선택해야 합니다.")
|
104 |
-
|
105 |
-
original_prompt, english_prompt = process_prompt(prompt)
|
106 |
-
|
107 |
-
selected_lora = loras[selected_index]
|
108 |
-
lora_path = selected_lora["repo"]
|
109 |
-
trigger_word = selected_lora["trigger_word"]
|
110 |
-
if(trigger_word):
|
111 |
-
if "trigger_position" in selected_lora:
|
112 |
-
if selected_lora["trigger_position"] == "prepend":
|
113 |
-
prompt_mash = f"{trigger_word} {english_prompt}"
|
114 |
-
else:
|
115 |
-
prompt_mash = f"{english_prompt} {trigger_word}"
|
116 |
-
else:
|
117 |
-
prompt_mash = f"{trigger_word} {english_prompt}"
|
118 |
-
else:
|
119 |
-
prompt_mash = english_prompt
|
120 |
-
|
121 |
-
with calculateDuration("LoRA 언로드"):
|
122 |
-
pipe.unload_lora_weights()
|
123 |
-
|
124 |
-
# Load LoRA weights
|
125 |
-
with calculateDuration(f"{selected_lora['title']}의 LoRA 가중치 로드"):
|
126 |
-
if "weights" in selected_lora:
|
127 |
-
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
128 |
-
else:
|
129 |
-
pipe.load_lora_weights(lora_path)
|
130 |
-
|
131 |
-
# Set random seed for reproducibility
|
132 |
-
with calculateDuration("시드 무작위화"):
|
133 |
-
if randomize_seed:
|
134 |
-
seed = random.randint(0, MAX_SEED)
|
135 |
-
|
136 |
-
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
137 |
-
|
138 |
-
# Consume the generator to get the final image
|
139 |
-
final_image = None
|
140 |
-
step_counter = 0
|
141 |
-
for image in image_generator:
|
142 |
-
step_counter+=1
|
143 |
-
final_image = image
|
144 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
145 |
-
yield image, seed, gr.update(value=progress_bar, visible=True), original_prompt, english_prompt
|
146 |
-
|
147 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
|
148 |
-
|
149 |
-
|
150 |
-
def get_huggingface_safetensors(link):
|
151 |
-
split_link = link.split("/")
|
152 |
-
if(len(split_link) == 2):
|
153 |
-
model_card = ModelCard.load(link)
|
154 |
-
base_model = model_card.data.get("base_model")
|
155 |
-
print(base_model)
|
156 |
-
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
157 |
-
raise Exception("Not a FLUX LoRA!")
|
158 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
159 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
160 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
161 |
-
fs = HfFileSystem()
|
162 |
-
try:
|
163 |
-
list_of_files = fs.ls(link, detail=False)
|
164 |
-
for file in list_of_files:
|
165 |
-
if(file.endswith(".safetensors")):
|
166 |
-
safetensors_name = file.split("/")[-1]
|
167 |
-
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
168 |
-
image_elements = file.split("/")
|
169 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
170 |
-
except Exception as e:
|
171 |
-
print(e)
|
172 |
-
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
173 |
-
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
174 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
175 |
-
|
176 |
-
def check_custom_model(link):
|
177 |
-
if(link.startswith("https://")):
|
178 |
-
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
179 |
-
link_split = link.split("huggingface.co/")
|
180 |
-
return get_huggingface_safetensors(link_split[1])
|
181 |
-
else:
|
182 |
-
return get_huggingface_safetensors(link)
|
183 |
-
|
184 |
-
def add_custom_lora(custom_lora):
|
185 |
-
global loras
|
186 |
-
if(custom_lora):
|
187 |
-
try:
|
188 |
-
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
189 |
-
print(f"Loaded custom LoRA: {repo}")
|
190 |
-
card = f'''
|
191 |
-
<div class="custom_lora_card">
|
192 |
-
<span>Loaded custom LoRA:</span>
|
193 |
-
<div class="card_internal">
|
194 |
-
<img src="{image}" />
|
195 |
-
<div>
|
196 |
-
<h3>{title}</h3>
|
197 |
-
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
198 |
-
</div>
|
199 |
-
</div>
|
200 |
-
</div>
|
201 |
-
'''
|
202 |
-
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
203 |
-
if(not existing_item_index):
|
204 |
-
new_item = {
|
205 |
-
"image": image,
|
206 |
-
"title": title,
|
207 |
-
"repo": repo,
|
208 |
-
"weights": path,
|
209 |
-
"trigger_word": trigger_word
|
210 |
-
}
|
211 |
-
print(new_item)
|
212 |
-
existing_item_index = len(loras)
|
213 |
-
loras.append(new_item)
|
214 |
-
|
215 |
-
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
216 |
-
except Exception as e:
|
217 |
-
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
|
218 |
-
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
|
219 |
-
else:
|
220 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
221 |
-
|
222 |
-
def remove_custom_lora():
|
223 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
224 |
-
|
225 |
-
run_lora.zerogpu = True
|
226 |
-
|
227 |
-
css = """
|
228 |
-
footer {
|
229 |
-
visibility: hidden;
|
230 |
-
}
|
231 |
-
"""
|
232 |
-
|
233 |
-
|
234 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
235 |
-
|
236 |
-
selected_index = gr.State(None)
|
237 |
-
with gr.Row():
|
238 |
-
with gr.Column(scale=3):
|
239 |
-
prompt = gr.Textbox(label="프롬프트", lines=1, placeholder="LoRA를 선택한 후 프롬프트를 입력하세요 (한글 또는 영어)")
|
240 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
241 |
-
generate_button = gr.Button("생성", variant="primary", elem_id="gen_btn")
|
242 |
-
with gr.Row():
|
243 |
-
with gr.Column():
|
244 |
-
selected_info = gr.Markdown("")
|
245 |
-
gallery = gr.Gallery(
|
246 |
-
[(item["image"], item["title"]) for item in loras],
|
247 |
-
label="LoRA 갤러리",
|
248 |
-
allow_preview=False,
|
249 |
-
columns=3,
|
250 |
-
elem_id="gallery"
|
251 |
-
)
|
252 |
-
with gr.Group():
|
253 |
-
custom_lora = gr.Textbox(label="커스텀 LoRA", info="LoRA Hugging Face 경로", placeholder="multimodalart/vintage-ads-flux")
|
254 |
-
gr.Markdown("[FLUX LoRA 목록 확인](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
255 |
-
custom_lora_info = gr.HTML(visible=False)
|
256 |
-
custom_lora_button = gr.Button("커스텀 LoRA 제거", visible=False)
|
257 |
-
with gr.Column():
|
258 |
-
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
259 |
-
result = gr.Image(label="생성된 이미지")
|
260 |
-
original_prompt_display = gr.Textbox(label="원본 프롬프트")
|
261 |
-
english_prompt_display = gr.Textbox(label="영어 프롬프트")
|
262 |
-
|
263 |
-
with gr.Row():
|
264 |
-
with gr.Accordion("고급 설정", open=False):
|
265 |
-
with gr.Column():
|
266 |
-
with gr.Row():
|
267 |
-
cfg_scale = gr.Slider(label="CFG 스케일", minimum=1, maximum=20, step=0.5, value=3.5)
|
268 |
-
steps = gr.Slider(label="스텝", minimum=1, maximum=50, step=1, value=28)
|
269 |
-
|
270 |
-
with gr.Row():
|
271 |
-
width = gr.Slider(label="너비", minimum=256, maximum=1536, step=64, value=1024)
|
272 |
-
height = gr.Slider(label="높이", minimum=256, maximum=1536, step=64, value=1024)
|
273 |
-
|
274 |
-
with gr.Row():
|
275 |
-
randomize_seed = gr.Checkbox(True, label="시드 무작위화")
|
276 |
-
seed = gr.Slider(label="시드", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
277 |
-
lora_scale = gr.Slider(label="LoRA 스케일", minimum=0, maximum=3, step=0.01, value=0.95)
|
278 |
-
|
279 |
-
|
280 |
-
gallery.select(
|
281 |
-
update_selection,
|
282 |
-
inputs=[width, height],
|
283 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
284 |
-
)
|
285 |
-
custom_lora.input(
|
286 |
-
add_custom_lora,
|
287 |
-
inputs=[custom_lora],
|
288 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
289 |
-
)
|
290 |
-
custom_lora_button.click(
|
291 |
-
remove_custom_lora,
|
292 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
293 |
-
)
|
294 |
-
|
295 |
-
gr.on(
|
296 |
-
triggers=[generate_button.click, prompt.submit],
|
297 |
-
fn=run_lora,
|
298 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
299 |
-
outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
|
300 |
-
)
|
301 |
-
|
302 |
-
app.queue()
|
303 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|