fantos commited on
Commit
31b10a0
·
verified ·
1 Parent(s): 6d1add0

Delete oldbackups

Browse files
Files changed (1) hide show
  1. oldbackups +0 -303
oldbackups DELETED
@@ -1,303 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import json
4
- import logging
5
- import torch
6
- from PIL import Image
7
- import spaces
8
- from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
9
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
- from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
11
- import copy
12
- import random
13
- import time
14
- from transformers import pipeline
15
-
16
- # 번역 모델 초기화
17
- translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
18
-
19
- # 프롬프트 처리 함수 추가
20
- def process_prompt(prompt):
21
- if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in prompt):
22
- translated = translator(prompt)[0]['translation_text']
23
- return prompt, translated
24
- return prompt, prompt
25
-
26
- KEY_JSON = os.getenv("KEY_JSON")
27
- with open(KEY_JSON, 'r') as f:
28
- loras = json.load(f)
29
-
30
- # Initialize the base model
31
- dtype = torch.bfloat16
32
- device = "cuda" if torch.cuda.is_available() else "cpu"
33
- base_model = "black-forest-labs/FLUX.1-dev"
34
-
35
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
36
- good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
37
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
38
-
39
- MAX_SEED = 2**32-1
40
-
41
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
42
-
43
- class calculateDuration:
44
- def __init__(self, activity_name=""):
45
- self.activity_name = activity_name
46
-
47
- def __enter__(self):
48
- self.start_time = time.time()
49
- return self
50
-
51
- def __exit__(self, exc_type, exc_value, traceback):
52
- self.end_time = time.time()
53
- self.elapsed_time = self.end_time - self.start_time
54
- if self.activity_name:
55
- print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
56
- else:
57
- print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
58
-
59
- def update_selection(evt: gr.SelectData, width, height):
60
- selected_lora = loras[evt.index]
61
- new_placeholder = f"{selected_lora['title']}를 위한 프롬프트를 입력하세요"
62
- lora_repo = selected_lora["repo"]
63
- updated_text = f"### 선택됨: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
64
- if "aspect" in selected_lora:
65
- if selected_lora["aspect"] == "portrait":
66
- width = 768
67
- height = 1024
68
- elif selected_lora["aspect"] == "landscape":
69
- width = 1024
70
- height = 768
71
- else:
72
- width = 1024
73
- height = 1024
74
- return (
75
- gr.update(placeholder=new_placeholder),
76
- updated_text,
77
- evt.index,
78
- width,
79
- height,
80
- )
81
-
82
- @spaces.GPU(duration=70)
83
- def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
84
- pipe.to("cuda")
85
- generator = torch.Generator(device="cuda").manual_seed(seed)
86
- with calculateDuration("이미지 생성"):
87
- # Generate image
88
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
89
- prompt=prompt_mash,
90
- num_inference_steps=steps,
91
- guidance_scale=cfg_scale,
92
- width=width,
93
- height=height,
94
- generator=generator,
95
- joint_attention_kwargs={"scale": lora_scale},
96
- output_type="pil",
97
- good_vae=good_vae,
98
- ):
99
- yield img
100
-
101
- def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
102
- if selected_index is None:
103
- raise gr.Error("진행하기 전에 LoRA를 선택해야 합니다.")
104
-
105
- original_prompt, english_prompt = process_prompt(prompt)
106
-
107
- selected_lora = loras[selected_index]
108
- lora_path = selected_lora["repo"]
109
- trigger_word = selected_lora["trigger_word"]
110
- if(trigger_word):
111
- if "trigger_position" in selected_lora:
112
- if selected_lora["trigger_position"] == "prepend":
113
- prompt_mash = f"{trigger_word} {english_prompt}"
114
- else:
115
- prompt_mash = f"{english_prompt} {trigger_word}"
116
- else:
117
- prompt_mash = f"{trigger_word} {english_prompt}"
118
- else:
119
- prompt_mash = english_prompt
120
-
121
- with calculateDuration("LoRA 언로드"):
122
- pipe.unload_lora_weights()
123
-
124
- # Load LoRA weights
125
- with calculateDuration(f"{selected_lora['title']}의 LoRA 가중치 로드"):
126
- if "weights" in selected_lora:
127
- pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
128
- else:
129
- pipe.load_lora_weights(lora_path)
130
-
131
- # Set random seed for reproducibility
132
- with calculateDuration("시드 무작위화"):
133
- if randomize_seed:
134
- seed = random.randint(0, MAX_SEED)
135
-
136
- image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
137
-
138
- # Consume the generator to get the final image
139
- final_image = None
140
- step_counter = 0
141
- for image in image_generator:
142
- step_counter+=1
143
- final_image = image
144
- progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
145
- yield image, seed, gr.update(value=progress_bar, visible=True), original_prompt, english_prompt
146
-
147
- yield final_image, seed, gr.update(value=progress_bar, visible=False), original_prompt, english_prompt
148
-
149
-
150
- def get_huggingface_safetensors(link):
151
- split_link = link.split("/")
152
- if(len(split_link) == 2):
153
- model_card = ModelCard.load(link)
154
- base_model = model_card.data.get("base_model")
155
- print(base_model)
156
- if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
157
- raise Exception("Not a FLUX LoRA!")
158
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
159
- trigger_word = model_card.data.get("instance_prompt", "")
160
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
161
- fs = HfFileSystem()
162
- try:
163
- list_of_files = fs.ls(link, detail=False)
164
- for file in list_of_files:
165
- if(file.endswith(".safetensors")):
166
- safetensors_name = file.split("/")[-1]
167
- if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
168
- image_elements = file.split("/")
169
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
170
- except Exception as e:
171
- print(e)
172
- gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
173
- raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
174
- return split_link[1], link, safetensors_name, trigger_word, image_url
175
-
176
- def check_custom_model(link):
177
- if(link.startswith("https://")):
178
- if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
179
- link_split = link.split("huggingface.co/")
180
- return get_huggingface_safetensors(link_split[1])
181
- else:
182
- return get_huggingface_safetensors(link)
183
-
184
- def add_custom_lora(custom_lora):
185
- global loras
186
- if(custom_lora):
187
- try:
188
- title, repo, path, trigger_word, image = check_custom_model(custom_lora)
189
- print(f"Loaded custom LoRA: {repo}")
190
- card = f'''
191
- <div class="custom_lora_card">
192
- <span>Loaded custom LoRA:</span>
193
- <div class="card_internal">
194
- <img src="{image}" />
195
- <div>
196
- <h3>{title}</h3>
197
- <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
198
- </div>
199
- </div>
200
- </div>
201
- '''
202
- existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
203
- if(not existing_item_index):
204
- new_item = {
205
- "image": image,
206
- "title": title,
207
- "repo": repo,
208
- "weights": path,
209
- "trigger_word": trigger_word
210
- }
211
- print(new_item)
212
- existing_item_index = len(loras)
213
- loras.append(new_item)
214
-
215
- return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
216
- except Exception as e:
217
- gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
218
- return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
219
- else:
220
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
221
-
222
- def remove_custom_lora():
223
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
224
-
225
- run_lora.zerogpu = True
226
-
227
- css = """
228
- footer {
229
- visibility: hidden;
230
- }
231
- """
232
-
233
-
234
- with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
235
-
236
- selected_index = gr.State(None)
237
- with gr.Row():
238
- with gr.Column(scale=3):
239
- prompt = gr.Textbox(label="프롬프트", lines=1, placeholder="LoRA를 선택한 후 프롬프트를 입력하세요 (한글 또는 영어)")
240
- with gr.Column(scale=1, elem_id="gen_column"):
241
- generate_button = gr.Button("생성", variant="primary", elem_id="gen_btn")
242
- with gr.Row():
243
- with gr.Column():
244
- selected_info = gr.Markdown("")
245
- gallery = gr.Gallery(
246
- [(item["image"], item["title"]) for item in loras],
247
- label="LoRA 갤러리",
248
- allow_preview=False,
249
- columns=3,
250
- elem_id="gallery"
251
- )
252
- with gr.Group():
253
- custom_lora = gr.Textbox(label="커스텀 LoRA", info="LoRA Hugging Face 경로", placeholder="multimodalart/vintage-ads-flux")
254
- gr.Markdown("[FLUX LoRA 목록 확인](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
255
- custom_lora_info = gr.HTML(visible=False)
256
- custom_lora_button = gr.Button("커스텀 LoRA 제거", visible=False)
257
- with gr.Column():
258
- progress_bar = gr.Markdown(elem_id="progress",visible=False)
259
- result = gr.Image(label="생성된 이미지")
260
- original_prompt_display = gr.Textbox(label="원본 프롬프트")
261
- english_prompt_display = gr.Textbox(label="영어 프롬프트")
262
-
263
- with gr.Row():
264
- with gr.Accordion("고급 설정", open=False):
265
- with gr.Column():
266
- with gr.Row():
267
- cfg_scale = gr.Slider(label="CFG 스케일", minimum=1, maximum=20, step=0.5, value=3.5)
268
- steps = gr.Slider(label="스텝", minimum=1, maximum=50, step=1, value=28)
269
-
270
- with gr.Row():
271
- width = gr.Slider(label="너비", minimum=256, maximum=1536, step=64, value=1024)
272
- height = gr.Slider(label="높이", minimum=256, maximum=1536, step=64, value=1024)
273
-
274
- with gr.Row():
275
- randomize_seed = gr.Checkbox(True, label="시드 무작위화")
276
- seed = gr.Slider(label="시드", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
277
- lora_scale = gr.Slider(label="LoRA 스케일", minimum=0, maximum=3, step=0.01, value=0.95)
278
-
279
-
280
- gallery.select(
281
- update_selection,
282
- inputs=[width, height],
283
- outputs=[prompt, selected_info, selected_index, width, height]
284
- )
285
- custom_lora.input(
286
- add_custom_lora,
287
- inputs=[custom_lora],
288
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
289
- )
290
- custom_lora_button.click(
291
- remove_custom_lora,
292
- outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
293
- )
294
-
295
- gr.on(
296
- triggers=[generate_button.click, prompt.submit],
297
- fn=run_lora,
298
- inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
299
- outputs=[result, seed, progress_bar, original_prompt_display, english_prompt_display]
300
- )
301
-
302
- app.queue()
303
- app.launch()