File size: 6,516 Bytes
a7e14dd
b3fa23a
 
 
 
 
 
 
 
 
 
a7e14dd
 
 
 
b3fa23a
 
a7e14dd
 
 
b3fa23a
5dbccd2
cb79291
 
a7e14dd
 
 
b3fa23a
 
 
 
 
 
 
 
a7e14dd
 
b3fa23a
a7e14dd
 
 
 
d26e4b8
a7e14dd
447d2b4
 
 
a7e14dd
b3fa23a
 
 
 
 
 
 
 
 
 
 
a7e14dd
 
 
 
 
 
 
33651c9
 
0fce594
 
 
a7e14dd
0fce594
a7e14dd
0fce594
 
a7e14dd
0fce594
a7e14dd
 
 
 
 
 
c1f6b6d
b3fa23a
0fce594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
 
 
 
 
 
 
 
b3fa23a
a7e14dd
 
 
b3fa23a
 
 
a7e14dd
b3fa23a
 
 
 
 
a7e14dd
b3fa23a
 
 
 
a7e14dd
d2b23ee
b3fa23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
b3fa23a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fed917
666723c
d59f446
 
666723c
7fed917
b3fa23a
 
 
 
666723c
b3fa23a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr

from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader

import subprocess
subprocess.run(["playwright", "install"])

# allow nested loops in Spaces
nest_asyncio.apply()

# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
    public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
    secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
    host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()

# --- Secrets via env vars ---
HF_TOKEN            = os.getenv("HF_TOKEN")
# OPENAI_API_KEY      = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY  = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY      = os.getenv("SERPER_API_KEY")

# --- LLMs ---
llm = HuggingFaceInferenceAPI(
    model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
    token=HF_TOKEN, 
    task="conversational"
)

memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)

# # OpenAI for pure function-calling
# openai_llm = OpenAI(
#     model="gpt-4o",
#     api_key=OPENAI_API_KEY,
#     temperature=0.0,
#     streaming=False,
# )

# --- Tools Setup ---
# DuckDuckGo
duck_spec = DuckDuckGoSearchToolSpec()
search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)

# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
    weather_tool_spec.weather_at_location,
    name="current_weather",
    description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
    weather_tool_spec.forecast_tommorrow_at_location,
    name="weather_forecast",
    description="Get tomorrow's weather forecast for a specific location (city, country)."
)

# Playwright (synchronous start)
async def _start_browser():
    return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
browser = asyncio.get_event_loop().run_until_complete(_start_browser())
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)

navigate_tool = FunctionTool.from_defaults(
    playwright_tool_spec.navigate_to,
    name="web_navigate",
    description="Navigate to a specific URL."
)
extract_text_tool = FunctionTool.from_defaults(
    playwright_tool_spec.extract_text,
    name="web_extract_text",
    description="Extract all text from the current page."
)
extract_links_tool = FunctionTool.from_defaults(
    playwright_tool_spec.extract_hyperlinks,
    name="web_extract_links",
    description="Extract all hyperlinks from the current page."
)

# Google News RSS
def fetch_google_news_rss():
    docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
    return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
google_rss_tool = FunctionTool.from_defaults(
    fn=fetch_google_news_rss,
    name="fetch_google_news_rss",
    description="Fetch latest headlines and URLs from Google News RSS."
)

# Serper
async def fetch_serper_news(query: str):
    if not serper_api_key:
        raise ValueError("Missing SERPER_API_KEY environment variable")
    url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad"
    headers = {"X-API-KEY": serper_api_key, "Content-Type": "application/json"}
    async with aiohttp.ClientSession() as session:
        async with session.get(url, headers=headers) as resp:
            resp.raise_for_status()
            return await resp.json()

serper_news_tool = FunctionTool.from_defaults(
    fetch_serper_news,
    name="fetch_news_from_serper",
    description="Fetch news articles on a given topic via the Serper API."
)

# Create the agent workflow
tools = [
    duckduckgo_tool,
    navigate_tool,
    extract_text_tool,
    extract_links_tool,
    weather_tool,
    forecast_tool,
    google_rss_tool,
    serper_news_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm)
ctx = Context(web_agent)

# Async helper to run agent queries
def run_query_sync(query: str):
    """Helper to run async agent.run in sync context."""
    return asyncio.get_event_loop().run_until_complete(
        web_agent.run(query, ctx=ctx)
    )

async def run_query(query: str):
    trace_id = f"agent-run-{uuid.uuid4().hex}"
    try:
        with instrumentor.observe(
            trace_id=trace_id,
            session_id="web-agent-session",
            user_id=ANON_USER_ID,
        ):
            return await web_agent.run(query, ctx=ctx)
    finally:
        instrumentor.flush()

# Gradio interface function
async def gradio_query(user_input, chat_history=None):
    chat_history = chat_history or []
    result = await run_query(user_input)
    response = result.response
    chat_history.append((user_input, response))
    return chat_history, chat_history

# Build and launch Gradio app
grb = gr.Blocks()
with grb:
    gr.Markdown("## Perspicacity")
    gr.Markdown(
        "This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes.\n\n"
        "🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do.  \n"
        "🙌 Got ideas or improvements? PRs welcome!  \n\n"
        "👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
    )
    chatbot = gr.Chatbot()  # conversation UI
    txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
    txt.submit(gradio_query, [txt, chatbot], [chatbot, chatbot])
    gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])

if __name__ == "__main__":
    grb.launch()