Spaces:
Running
Running
File size: 8,530 Bytes
a7e14dd 5dbccd2 cb79291 a7e14dd d26e4b8 a7e14dd 447d2b4 96b97d6 447d2b4 a7e14dd 33651c9 0fce594 a7e14dd 0fce594 a7e14dd 0fce594 a7e14dd 0fce594 a7e14dd c1f6b6d 0fce594 a7e14dd 0fce594 a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd d2b23ee a7e14dd df80b38 a7e14dd 666723c 7fed917 666723c d59f446 a7e14dd 666723c a7e14dd 666723c 7fed917 666723c d59f446 666723c 7fed917 666723c a7e14dd 666723c 7fed917 666723c 7fed917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# app.py
import os, asyncio, aiohttp, nest_asyncio
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import ReActAgent, FunctionAgent, AgentWorkflow
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.llms.openai import OpenAI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader
from llama_index.core.workflow import Context
import gradio as gr
import subprocess
subprocess.run(["playwright", "install"])
# allow nested loops in Spaces
nest_asyncio.apply()
# --- Secrets via env vars ---
HF_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- LLMs ---
llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
token=HF_TOKEN,
task="conversational"
)
# OpenAI for pure function-calling
openai_llm = OpenAI(
model="gpt-4o",
api_key=OPENAI_API_KEY,
temperature=0.0,
streaming=False,
)
# --- Memory ---
memory = ChatMemoryBuffer.from_defaults(token_limit=4096)
# --- Tools Setup ---
# DuckDuckGo
duck_spec = DuckDuckGoSearchToolSpec()
search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
weather_tool_spec.weather_at_location,
name="current_weather",
description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
weather_tool_spec.forecast_tommorrow_at_location,
name="weather_forecast",
description="Get tomorrow's weather forecast for a specific location (city, country)."
)
# Playwright (synchronous start)
async def _start_browser():
return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
browser = asyncio.get_event_loop().run_until_complete(_start_browser())
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
navigate_tool = FunctionTool.from_defaults(
playwright_tool_spec.navigate_to,
name="web_navigate",
description="Navigate to a specific URL."
)
extract_text_tool = FunctionTool.from_defaults(
playwright_tool_spec.extract_text,
name="web_extract_text",
description="Extract all text from the current page."
)
extract_links_tool = FunctionTool.from_defaults(
playwright_tool_spec.extract_hyperlinks,
name="web_extract_links",
description="Extract all hyperlinks from the current page."
)
# Google News RSS
def fetch_google_news_rss():
docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
google_rss_tool = FunctionTool.from_defaults(
fn=fetch_google_news_rss,
name="fetch_google_news_rss",
description="Get headlines & URLs from Google News RSS."
)
# Serper
async def fetch_serper(ctx, query):
if not SERPER_API_KEY:
raise ValueError("SERPER_API_KEY missing")
url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad"
hdr = {"X-API-KEY": SERPER_API_KEY, "Content-Type":"application/json"}
async with aiohttp.ClientSession() as s:
r = await s.get(url, headers=hdr)
r.raise_for_status()
return await r.json()
serper_news_tool = FunctionTool.from_defaults(
fetch_serper, name="fetch_news_from_serper",
description="Search today’s news via Serper."
)
# --- Agents ---
# 1. Google News RSS Agent (replaces old google_news_agent)
google_rss_agent = FunctionAgent(
name="google_rss_agent",
description="Fetches latest headlines and URLs from Google News RSS feed.",
system_prompt="You are an agent that fetches the latest headlines and URLs from the Google News RSS feed.",
tools=[google_rss_tool],
llm=openai_llm,
memory=memory,
)
# 2. Web Browsing Agent
web_browsing_agent = ReActAgent(
name="web_browsing_agent",
description="Fetches Serper URLs, navigates to each link, extracts the text and builds a summary",
system_prompt=(
"You are a news-content agent. When asked for details on a headline:\n"
"1. Call `fetch_news_from_serper(query)` to get JSON with article URLs.\n"
"2. For each top URL, call `web_navigate(url)` then `web_extract_text()`.\n"
"3. Synthesize those texts into a concise summary."
),
tools=[serper_news_tool, navigate_tool, extract_text_tool, extract_links_tool],
llm=llm,
memory=memory,
)
# 3. Weather Agent
weather_agent = ReActAgent(
name="weather_agent",
description="Answers weather-related questions.",
system_prompt="You are a weather agent that provides current weather and forecasts.",
tools=[weather_tool, forecast_tool],
llm=openai_llm,
)
# 4. DuckDuckGo Search Agent
search_agent = ReActAgent(
name="search_agent",
description="Searches general info using DuckDuckGo.",
system_prompt="You are a search agent that uses DuckDuckGo to answer questions.",
tools=[search_tool],
llm=openai_llm,
)
router_agent = ReActAgent(
name="router_agent",
description="Routes queries to the correct specialist agent.",
system_prompt=(
"You are RouterAgent. "
"Given the user query, reply with exactly one name from: "
"['google_rss_agent','weather_agent','search_agent','web_browsing_agent']."
),
llm=llm,
tools=[
FunctionTool.from_defaults(
fn=lambda ctx, choice: choice,
name="choose_agent",
description="Return the chosen agent name."
)
],
can_handoff_to=[
"google_rss_agent",
"weather_agent",
"search_agent",
"web_browsing_agent",
],
)
workflow = AgentWorkflow(
agents=[router_agent, google_rss_agent, web_browsing_agent, weather_agent, search_agent],
root_agent="router_agent"
)
ctx = Context(workflow)
# # Sync wrapper
# async def respond(query: str) -> str:
# out = await workflow.run(user_msg=query, ctx=ctx, memory=memory)
# return out.response.blocks[0].text
# # Async response handler for Gradio
# async def respond_gradio(query, chat_history):
# answer = await respond(query)
# return chat_history + [[query, answer]]
# New unified respond() function
async def respond(message, history):
out = await workflow.run(user_msg=message, ctx=ctx, memory=memory)
answer = out.response.blocks[0].text
# Return the full updated history
return history + [[message, answer]]
# --- Gradio UI ---
# with gr.Blocks() as demo:
# gr.Markdown("## 🤖 Perspicacity")
# gr.Markdown(
# "This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes. \n\n"
# "🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) at Hugging Face — it's just a demo to show what agents can do. \n"
# "🙌 Got ideas or improvements? PRs welcome!"
# )
# chatbot = gr.Chatbot()
# txt = gr.Textbox(placeholder="Ask me about news, weather, etc…")
# txt.submit(respond_gradio, inputs=[txt, chatbot], outputs=chatbot)
# demo.launch()
with gr.Blocks() as demo:
gr.Markdown("## 🗞️ Multi‐Agent News & Weather Chatbot")
gr.Markdown(
"This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes.\n\n"
"🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do. \n"
"🙌 Got ideas or improvements? PRs welcome! \n\n"
"👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
)
chatbot = gr.Chatbot()
txt = gr.Textbox(placeholder="Ask me about news, weather or anything…")
txt.submit(respond, inputs=[txt, chatbot], outputs=chatbot)
demo.launch() |