File size: 8,530 Bytes
a7e14dd
 
 
 
 
 
 
 
 
 
 
 
 
5dbccd2
cb79291
 
a7e14dd
 
 
 
 
 
 
 
 
 
d26e4b8
a7e14dd
447d2b4
 
 
 
 
 
96b97d6
447d2b4
 
a7e14dd
 
 
 
 
 
 
 
 
 
 
33651c9
 
0fce594
 
 
a7e14dd
0fce594
a7e14dd
0fce594
 
a7e14dd
0fce594
a7e14dd
 
 
 
 
 
c1f6b6d
0fce594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fce594
a7e14dd
 
 
 
 
d2b23ee
a7e14dd
d2b23ee
 
 
a7e14dd
d2b23ee
 
a7e14dd
d2b23ee
 
 
 
 
a7e14dd
d2b23ee
 
 
 
 
 
 
 
a7e14dd
d2b23ee
 
a7e14dd
d2b23ee
 
 
 
 
a7e14dd
d2b23ee
 
a7e14dd
d2b23ee
 
 
a7e14dd
d2b23ee
a7e14dd
d2b23ee
 
 
 
a7e14dd
d2b23ee
 
a7e14dd
 
d2b23ee
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
 
 
df80b38
a7e14dd
 
 
 
666723c
 
 
 
7fed917
666723c
 
 
 
 
 
 
 
d59f446
 
 
a7e14dd
 
666723c
 
 
 
 
 
 
 
 
 
 
 
 
a7e14dd
666723c
7fed917
666723c
d59f446
 
666723c
7fed917
666723c
a7e14dd
666723c
7fed917
666723c
7fed917
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# app.py
import os, asyncio, aiohttp, nest_asyncio
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import ReActAgent, FunctionAgent, AgentWorkflow
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.llms.openai import OpenAI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader
from llama_index.core.workflow import Context
import gradio as gr
import subprocess
subprocess.run(["playwright", "install"])

# allow nested loops in Spaces
nest_asyncio.apply()

# --- Secrets via env vars ---
HF_TOKEN            = os.getenv("HF_TOKEN")
OPENAI_API_KEY      = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY  = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY      = os.getenv("SERPER_API_KEY")

# --- LLMs ---
llm = HuggingFaceInferenceAPI(
    model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
    token=HF_TOKEN, 
    task="conversational"
)
# OpenAI for pure function-calling
openai_llm = OpenAI(
    model="gpt-4o",
    api_key=OPENAI_API_KEY,
    temperature=0.0,
    streaming=False,
)

# --- Memory ---
memory = ChatMemoryBuffer.from_defaults(token_limit=4096)

# --- Tools Setup ---
# DuckDuckGo
duck_spec = DuckDuckGoSearchToolSpec()
search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)

# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
    weather_tool_spec.weather_at_location,
    name="current_weather",
    description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
    weather_tool_spec.forecast_tommorrow_at_location,
    name="weather_forecast",
    description="Get tomorrow's weather forecast for a specific location (city, country)."
)

# Playwright (synchronous start)
async def _start_browser():
    return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
browser = asyncio.get_event_loop().run_until_complete(_start_browser())
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
navigate_tool = FunctionTool.from_defaults(
    playwright_tool_spec.navigate_to,
    name="web_navigate",
    description="Navigate to a specific URL."
)
extract_text_tool = FunctionTool.from_defaults(
    playwright_tool_spec.extract_text,
    name="web_extract_text",
    description="Extract all text from the current page."
)
extract_links_tool = FunctionTool.from_defaults(
    playwright_tool_spec.extract_hyperlinks,
    name="web_extract_links",
    description="Extract all hyperlinks from the current page."
)

# Google News RSS
def fetch_google_news_rss():
    docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
    return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
google_rss_tool = FunctionTool.from_defaults(
    fn=fetch_google_news_rss,
    name="fetch_google_news_rss",
    description="Get headlines & URLs from Google News RSS."
)

# Serper
async def fetch_serper(ctx, query):
    if not SERPER_API_KEY:
        raise ValueError("SERPER_API_KEY missing")
    url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad"
    hdr = {"X-API-KEY": SERPER_API_KEY, "Content-Type":"application/json"}
    async with aiohttp.ClientSession() as s:
        r = await s.get(url, headers=hdr)
        r.raise_for_status()
        return await r.json()
serper_news_tool = FunctionTool.from_defaults(
    fetch_serper, name="fetch_news_from_serper", 
    description="Search today’s news via Serper."
)

# --- Agents ---
# 1. Google News RSS Agent (replaces old google_news_agent)
google_rss_agent = FunctionAgent(
    name="google_rss_agent",
    description="Fetches latest headlines and URLs from Google News RSS feed.",
    system_prompt="You are an agent that fetches the latest headlines and URLs from the Google News RSS feed.",
    tools=[google_rss_tool],
    llm=openai_llm,
    memory=memory,
)

# 2. Web Browsing Agent
web_browsing_agent = ReActAgent(
    name="web_browsing_agent",
    description="Fetches Serper URLs, navigates to each link, extracts the text and builds a summary",
    system_prompt=(
        "You are a news-content agent. When asked for details on a headline:\n"
        "1. Call `fetch_news_from_serper(query)` to get JSON with article URLs.\n"
        "2. For each top URL, call `web_navigate(url)` then `web_extract_text()`.\n"
        "3. Synthesize those texts into a concise summary."
    ),
    tools=[serper_news_tool, navigate_tool, extract_text_tool, extract_links_tool],
    llm=llm,
    memory=memory,
)

# 3. Weather Agent
weather_agent = ReActAgent(
    name="weather_agent",
    description="Answers weather-related questions.",
    system_prompt="You are a weather agent that provides current weather and forecasts.",
    tools=[weather_tool, forecast_tool],
    llm=openai_llm,
)

# 4. DuckDuckGo Search Agent
search_agent = ReActAgent(
    name="search_agent",
    description="Searches general info using DuckDuckGo.",
    system_prompt="You are a search agent that uses DuckDuckGo to answer questions.",
    tools=[search_tool],
    llm=openai_llm,
)

router_agent = ReActAgent(
    name="router_agent",
    description="Routes queries to the correct specialist agent.",
    system_prompt=(
        "You are RouterAgent. "
        "Given the user query, reply with exactly one name from: "
        "['google_rss_agent','weather_agent','search_agent','web_browsing_agent']."
    ),
    llm=llm,
    tools=[
        FunctionTool.from_defaults(
            fn=lambda ctx, choice: choice,
            name="choose_agent",
            description="Return the chosen agent name."
        )
    ],
    can_handoff_to=[
        "google_rss_agent",
        "weather_agent",
        "search_agent",
        "web_browsing_agent",
    ],
)

workflow = AgentWorkflow(
    agents=[router_agent, google_rss_agent, web_browsing_agent, weather_agent, search_agent],
    root_agent="router_agent"
)
ctx = Context(workflow)

# # Sync wrapper
# async def respond(query: str) -> str:
#     out = await workflow.run(user_msg=query, ctx=ctx, memory=memory)
#     return out.response.blocks[0].text
    
# # Async response handler for Gradio
# async def respond_gradio(query, chat_history):
#     answer = await respond(query)
#     return chat_history + [[query, answer]]

# New unified respond() function
async def respond(message, history):
    out = await workflow.run(user_msg=message, ctx=ctx, memory=memory)
    answer = out.response.blocks[0].text
    # Return the full updated history
    return history + [[message, answer]]

# --- Gradio UI ---
# with gr.Blocks() as demo:
#     gr.Markdown("## 🤖 Perspicacity")
#     gr.Markdown(
#     "This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes.  \n\n"
#     "🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) at Hugging Face — it's just a demo to show what agents can do.  \n"
#     "🙌 Got ideas or improvements? PRs welcome!"
#     )
#     chatbot = gr.Chatbot()
#     txt = gr.Textbox(placeholder="Ask me about news, weather, etc…")

#     txt.submit(respond_gradio, inputs=[txt, chatbot], outputs=chatbot)

# demo.launch()
with gr.Blocks() as demo:
    gr.Markdown("## 🗞️ Multi‐Agent News & Weather Chatbot")
    gr.Markdown(
        "This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes.\n\n"
        "🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do.  \n"
        "🙌 Got ideas or improvements? PRs welcome!  \n\n"
        "👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
    )

    chatbot = gr.Chatbot()
    txt = gr.Textbox(placeholder="Ask me about news, weather or anything…")

    txt.submit(respond, inputs=[txt, chatbot], outputs=chatbot)

demo.launch()