Spaces:
Sleeping
Sleeping
mp3 gradio, rss logic
Browse files- app.py +63 -3
- requirements.txt +3 -1
- rss.xml +2 -2
- update-rss.py +42 -0
app.py
CHANGED
@@ -10,10 +10,19 @@ import time
|
|
10 |
import pymupdf
|
11 |
import requests
|
12 |
from pathlib import Path
|
|
|
|
|
13 |
|
14 |
import torch
|
15 |
from huggingface_hub import InferenceClient
|
16 |
from kokoro import KModel, KPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# -----------------------------------------------------------------------------
|
18 |
# Get default podcast materials, from Daily papers and one download
|
19 |
# -----------------------------------------------------------------------------
|
@@ -60,6 +69,34 @@ def generate_podcast_script(subject: str, steering_question: str | None = None)
|
|
60 |
podcast_text = full_text[dialogue_start_index:]
|
61 |
return podcast_text
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# -----------------------------------------------------------------------------
|
64 |
# Kokoro TTS
|
65 |
# -----------------------------------------------------------------------------
|
@@ -109,9 +146,32 @@ def generate_podcast(topic: str):
|
|
109 |
t0 = time.time()
|
110 |
ref_s = pipeline_voice[len(ps) - 1]
|
111 |
audio_numpy = kmodel(ps, ref_s, speed).numpy()
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
t1 = time.time()
|
114 |
-
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds.
|
|
|
115 |
|
116 |
EXAMPLES = [
|
117 |
["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"],
|
@@ -132,7 +192,7 @@ Based on [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M) and [Llama-3.3-
|
|
132 |
outputs=[
|
133 |
gr.Audio(
|
134 |
label="Listen to your podcast! 🔊",
|
135 |
-
format="
|
136 |
streaming=True,
|
137 |
),
|
138 |
],
|
|
|
10 |
import pymupdf
|
11 |
import requests
|
12 |
from pathlib import Path
|
13 |
+
from pydub import AudioSegment # Add this import
|
14 |
+
import tempfile
|
15 |
|
16 |
import torch
|
17 |
from huggingface_hub import InferenceClient
|
18 |
from kokoro import KModel, KPipeline
|
19 |
+
|
20 |
+
# -----------------------------------------------------------------------------
|
21 |
+
# to-do
|
22 |
+
# - Add field for the podcast title and description
|
23 |
+
# - add field for the script
|
24 |
+
# -----------------------------------------------------------------------------
|
25 |
+
|
26 |
# -----------------------------------------------------------------------------
|
27 |
# Get default podcast materials, from Daily papers and one download
|
28 |
# -----------------------------------------------------------------------------
|
|
|
69 |
podcast_text = full_text[dialogue_start_index:]
|
70 |
return podcast_text
|
71 |
|
72 |
+
def generate_headline_and_description(subject: str, steering_question: str | None = None) -> tuple[str, str]:
|
73 |
+
"""Ask the LLM for a headline and a short description for the podcast episode."""
|
74 |
+
prompt = f"""You are a world-class podcast producer. Given the following paper or topic, generate:
|
75 |
+
1. A catchy, informative headline for a podcast episode about it (max 15 words).
|
76 |
+
2. A short, engaging description (2-3 sentences, max 60 words) that summarizes what listeners will learn or why the topic is exciting.
|
77 |
+
|
78 |
+
Here is the topic:
|
79 |
+
{subject[:10000]}
|
80 |
+
"""
|
81 |
+
messages = [
|
82 |
+
{"role": "system", "content": "You are a world-class podcast producer."},
|
83 |
+
{"role": "user", "content": prompt},
|
84 |
+
]
|
85 |
+
response = client.chat_completion(
|
86 |
+
messages,
|
87 |
+
max_tokens=512,
|
88 |
+
)
|
89 |
+
full_text = response.choices[0].message.content.strip()
|
90 |
+
# Try to split headline and description
|
91 |
+
lines = [l.strip() for l in full_text.splitlines() if l.strip()]
|
92 |
+
if len(lines) >= 2:
|
93 |
+
headline = lines[0]
|
94 |
+
description = " ".join(lines[1:])
|
95 |
+
else:
|
96 |
+
headline = full_text[:80]
|
97 |
+
description = full_text
|
98 |
+
return headline, description
|
99 |
+
|
100 |
# -----------------------------------------------------------------------------
|
101 |
# Kokoro TTS
|
102 |
# -----------------------------------------------------------------------------
|
|
|
146 |
t0 = time.time()
|
147 |
ref_s = pipeline_voice[len(ps) - 1]
|
148 |
audio_numpy = kmodel(ps, ref_s, speed).numpy()
|
149 |
+
|
150 |
+
# Convert numpy array to MP3
|
151 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
|
152 |
+
sf.write(temp_wav.name, audio_numpy, sr)
|
153 |
+
temp_wav_path = temp_wav.name
|
154 |
+
|
155 |
+
# Use pydub to convert WAV to MP3
|
156 |
+
audio_segment = AudioSegment.from_wav(temp_wav_path)
|
157 |
+
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as temp_mp3:
|
158 |
+
audio_segment.export(temp_mp3.name, format="mp3")
|
159 |
+
temp_mp3_path = temp_mp3.name
|
160 |
+
|
161 |
+
# Read the MP3 data
|
162 |
+
with open(temp_mp3_path, 'rb') as mp3_file:
|
163 |
+
mp3_data = mp3_file.read()
|
164 |
+
|
165 |
+
# Clean up temporary files
|
166 |
+
os.unlink(temp_wav_path)
|
167 |
+
os.unlink(temp_mp3_path)
|
168 |
+
|
169 |
+
# Yield MP3 data instead of numpy array
|
170 |
+
yield (sr, mp3_data)
|
171 |
+
|
172 |
t1 = time.time()
|
173 |
+
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. MP3 conversion completed.")
|
174 |
+
|
175 |
|
176 |
EXAMPLES = [
|
177 |
["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"],
|
|
|
192 |
outputs=[
|
193 |
gr.Audio(
|
194 |
label="Listen to your podcast! 🔊",
|
195 |
+
format="mp3",
|
196 |
streaming=True,
|
197 |
),
|
198 |
],
|
requirements.txt
CHANGED
@@ -4,4 +4,6 @@ transformers
|
|
4 |
PyMuPDF
|
5 |
soundfile
|
6 |
numpy
|
7 |
-
requests
|
|
|
|
|
|
4 |
PyMuPDF
|
5 |
soundfile
|
6 |
numpy
|
7 |
+
requests
|
8 |
+
pydub
|
9 |
+
ffmpeg-python
|
rss.xml
CHANGED
@@ -26,8 +26,8 @@
|
|
26 |
|
27 |
<!-- Example Episode -->
|
28 |
<item>
|
29 |
-
<title>
|
30 |
-
<description>Today’s
|
31 |
<pubDate>Tue, 13 May 2025 10:00:00 +0000</pubDate>
|
32 |
<enclosure url="https://yourpodcastwebsite.com/audio/episode1.mp3" length="12345678" type="audio/mpeg"/>
|
33 |
<guid>https://yourpodcastwebsite.com/audio/episode1.mp3</guid>
|
|
|
26 |
|
27 |
<!-- Example Episode -->
|
28 |
<item>
|
29 |
+
<title>Step 1x3D – From Scrap Models to Masterpieces</title>
|
30 |
+
<description>Today’s episode dives into Step 1x3D, a new open-source method that cleans noisy 3D data, bridges 2D–3D generation, and rivals top proprietary tools. From mesh repair to texture-perfect diffusion, it’s a major leap for 3D AI.</description>
|
31 |
<pubDate>Tue, 13 May 2025 10:00:00 +0000</pubDate>
|
32 |
<enclosure url="https://yourpodcastwebsite.com/audio/episode1.mp3" length="12345678" type="audio/mpeg"/>
|
33 |
<guid>https://yourpodcastwebsite.com/audio/episode1.mp3</guid>
|
update-rss.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import xml.etree.ElementTree as ET
|
2 |
+
from datetime import datetime
|
3 |
+
import os
|
4 |
+
from app import generate_headline_and_description
|
5 |
+
|
6 |
+
def get_next_episode_number(podcast_dir="podcasts"):
|
7 |
+
files = [f for f in os.listdir(podcast_dir) if f.endswith(".wav")]
|
8 |
+
return len(files) + 1
|
9 |
+
|
10 |
+
def update_rss(subject, audio_url, audio_length, rss_path="rss.xml"):
|
11 |
+
# Generate headline and description automatically
|
12 |
+
title, description = generate_headline_and_description(subject)
|
13 |
+
|
14 |
+
tree = ET.parse(rss_path)
|
15 |
+
root = tree.getroot()
|
16 |
+
channel = root.find("channel")
|
17 |
+
|
18 |
+
# Update lastBuildDate
|
19 |
+
last_build_date = channel.find("lastBuildDate")
|
20 |
+
now_rfc2822 = datetime.utcnow().strftime("%a, %d %b %Y %H:%M:%S +0000")
|
21 |
+
if last_build_date is not None:
|
22 |
+
last_build_date.text = now_rfc2822
|
23 |
+
|
24 |
+
# Create new item
|
25 |
+
item = ET.Element("item")
|
26 |
+
ET.SubElement(item, "title").text = title
|
27 |
+
ET.SubElement(item, "description").text = description
|
28 |
+
ET.SubElement(item, "pubDate").text = now_rfc2822
|
29 |
+
ET.SubElement(item, "enclosure", url=audio_url, length=str(audio_length), type="audio/mpeg")
|
30 |
+
ET.SubElement(item, "guid").text = audio_url
|
31 |
+
ET.SubElement(item, "itunes:explicit").text = "false"
|
32 |
+
|
33 |
+
# Insert new item after lastBuildDate (i.e., as the first item)
|
34 |
+
# Find the first <item> and insert before it, or append if none exist
|
35 |
+
items = channel.findall("item")
|
36 |
+
if items:
|
37 |
+
channel.insert(list(channel).index(items[0]), item)
|
38 |
+
else:
|
39 |
+
channel.append(item)
|
40 |
+
|
41 |
+
# Write back to file
|
42 |
+
tree.write(rss_path, encoding="utf-8", xml_declaration=True)
|