|
import torch |
|
from dataclasses import dataclass |
|
from accelerate import PartialState |
|
from datasets import load_dataset, DatasetDict, Dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser |
|
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format |
|
from dataloaders.data_loader import get_oasst |
|
from pdb import set_trace as st |
|
import wandb |
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ScriptArguments: |
|
""" |
|
Configuration for the script. |
|
""" |
|
dataset_name: str = "OpenAssistant/oasst1" |
|
output_dir: str = "/raid/lingo/jen_ben/HF-RLHF/kto_nov_24_2_epochs" |
|
pretrained_model_name: str = "mistralai/Mistral-7B-v0.1" |
|
checkpoint_path: str = "/raid/lingo/jen_ben/HF-RLHF/kto_nov_24_2_epochs" |
|
push_to_hub: bool = False |
|
|
|
@dataclass |
|
class TrainingArguments(KTOConfig): |
|
""" |
|
Configuration for the KTO trainer. |
|
""" |
|
output_dir: str = "/raid/lingo/jen_ben/HF-RLHF/kto_nov_24_2_epochs" |
|
num_train_epochs: int = 2 |
|
per_device_train_batch_size: int = 4 |
|
learning_rate: float = 5e-7 |
|
lr_scheduler_type: str = "cosine" |
|
gradient_accumulation_steps: int = 1 |
|
logging_steps: int = 10 |
|
eval_steps: int = 500 |
|
warmup_ratio: float = 0.1 |
|
bf16: bool = True |
|
logging_first_step: bool = True |
|
|
|
@dataclass |
|
class ModelArguments(ModelConfig): |
|
""" |
|
Configuration for the model. |
|
""" |
|
model_name_or_path: str = "mistralai/Mistral-7B-v0.1" |
|
use_peft: bool = True |
|
lora_target_modules: str = "all-linear" |
|
lora_r: int = 16 |
|
lora_alpha: int = 16 |
|
|
|
|
|
script_args = ScriptArguments() |
|
training_args = TrainingArguments(output_dir=script_args.output_dir) |
|
model_args = ModelArguments(model_name_or_path=script_args.pretrained_model_name) |
|
|
|
|
|
|
|
|
|
|
|
def load_model_and_tokenizer(model_args): |
|
""" |
|
Load a model and tokenizer from a specified path. |
|
""" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
trust_remote_code=model_args.trust_remote_code, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
trust_remote_code=model_args.trust_remote_code |
|
) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
if tokenizer.chat_template is None: |
|
model, tokenizer = setup_chat_format(model, tokenizer) |
|
|
|
return model, tokenizer |
|
|
|
|
|
|
|
def load_and_format_oasst_dataset(tokenizer): |
|
""" |
|
Load, process, and format the OpenAssistant dataset into DPO-compatible format. |
|
|
|
Args: |
|
split (str): The dataset split to load ('train' or 'test'). |
|
tokenizer (AutoTokenizer): Tokenizer to apply chat templates. |
|
num_proc (int, optional): Number of processes for parallel processing. |
|
|
|
Returns: |
|
Dataset: Processed and formatted dataset. |
|
""" |
|
|
|
|
|
train_dataset = get_oasst(split='train') |
|
|
|
|
|
dpo_train_data = { |
|
"prompt": [], |
|
"chosen": [], |
|
"rejected": [] |
|
} |
|
|
|
|
|
for prompt, key in train_dataset.data.items(): |
|
if hasattr(key, "pairs") and key.pairs: |
|
for i, j in key.pairs: |
|
|
|
dpo_train_data["prompt"].append(key.prompt) |
|
dpo_train_data["chosen"].append(key.generations[i]) |
|
dpo_train_data["rejected"].append(key.generations[j]) |
|
|
|
|
|
dpo_train_dataset = Dataset.from_dict(dpo_train_data) |
|
|
|
|
|
dataset_dict = DatasetDict({ |
|
"train": dpo_train_dataset |
|
}) |
|
|
|
|
|
test_dataset = get_oasst(split='test') |
|
|
|
dpo_test_data = { |
|
"prompt": [], |
|
"chosen": [], |
|
"rejected": [] |
|
} |
|
|
|
for prompt, key in test_dataset.data.items(): |
|
if hasattr(key, "pairs") and key.pairs: |
|
for i, j in key.pairs: |
|
|
|
dpo_test_data["prompt"].append(key.prompt) |
|
dpo_test_data["chosen"].append(key.generations[i]) |
|
dpo_test_data["rejected"].append(key.generations[j]) |
|
|
|
dpo_test_dataset = Dataset.from_dict(dpo_test_data) |
|
dataset_dict["test"] = dpo_test_dataset |
|
|
|
|
|
dataset_dict = maybe_unpair_preference_dataset(dataset_dict, num_proc=training_args.dataset_num_proc) |
|
print(f'loaded dataset') |
|
|
|
|
|
|
|
def format_dataset(example): |
|
|
|
if isinstance(example["prompt"], str): |
|
example["prompt"] = [{"role": "user", "content": example["prompt"]}] |
|
elif isinstance(example["prompt"], list): |
|
|
|
for item in example["prompt"]: |
|
if "role" not in item or "content" not in item: |
|
raise ValueError(f"Each item in 'prompt' must have 'role' and 'content': {item}") |
|
|
|
|
|
if isinstance(example["completion"], str): |
|
example["completion"] = [{"role": "assistant", "content": example["completion"]}] |
|
elif isinstance(example["completion"], list): |
|
|
|
for item in example["completion"]: |
|
if "role" not in item or "content" not in item: |
|
raise ValueError(f"Each item in 'completion' must have 'role' and 'content': {item}") |
|
|
|
|
|
example["prompt"] = tokenizer.apply_chat_template(example["prompt"], tokenize=False) |
|
example["completion"] = tokenizer.apply_chat_template(example["completion"], tokenize=False) |
|
|
|
return example |
|
|
|
|
|
|
|
|
|
with PartialState().local_main_process_first(): |
|
dataset = dataset_dict.map(format_dataset, num_proc=training_args.dataset_num_proc) |
|
|
|
return dataset |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
wandb.init(project="kto") |
|
|
|
|
|
print("Loading models and tokenizer...") |
|
model, tokenizer = load_model_and_tokenizer(model_args) |
|
ref_model, _ = load_model_and_tokenizer(model_args) |
|
print("Models and tokenizer loaded.") |
|
|
|
|
|
print("Loading, processing, and formatting dataset...") |
|
dataset = load_and_format_oasst_dataset( |
|
tokenizer=tokenizer, |
|
) |
|
|
|
|
|
print("Initializing trainer...") |
|
trainer = KTOTrainer( |
|
model=model, |
|
ref_model=ref_model, |
|
args=training_args, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["test"], |
|
tokenizer=tokenizer, |
|
peft_config=get_peft_config(model_args), |
|
) |
|
|
|
|
|
print("Starting training...") |
|
trainer.train() |
|
print("Training completed.") |
|
|
|
|
|
print("Evaluating model...") |
|
metrics = trainer.evaluate() |
|
print(f"Metrics: {metrics}") |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
wandb.log({ |
|
"epoch": metrics.get("epoch"), |
|
"grad_norm": metrics.get("grad_norm"), |
|
"kl": metrics.get("kl"), |
|
"learning_rate": metrics.get("learning_rate"), |
|
"logits/chosen": metrics.get("logits/chosen"), |
|
"logits/rejected": metrics.get("logits/rejected"), |
|
"logps/chosen": metrics.get("logps/chosen"), |
|
"logps/rejected": metrics.get("logps/rejected"), |
|
"loss": metrics.get("loss"), |
|
"rewards/chosen": metrics.get("rewards/chosen"), |
|
"rewards/margins": metrics.get("rewards/margins"), |
|
"rewards/rejected": metrics.get("rewards/rejected"), |
|
"step": metrics.get("step") |
|
}) |
|
|
|
|
|
trainer.save_model(training_args.output_dir) |
|
if script_args.push_to_hub: |
|
trainer.push_to_hub(dataset_name=script_args.dataset_name) |
|
|
|
print("Process completed.") |
|
|
|
|
|
wandb.finish() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|