Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import datasets | |
import pandas as pd | |
_CITATION = """\ | |
@article{huang2023ceval, | |
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models}, | |
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and others}, | |
journal={arXiv preprint arXiv:2305.08322}, | |
year={2023} | |
} | |
""" | |
_DESCRIPTION = """\ | |
C-Eval is a comprehensive Chinese evaluation suite for foundation models. | |
It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels. | |
""" | |
_HOMEPAGE = "https://cevalbenchmark.com" | |
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" | |
_URL = "ceval.zip" | |
task_list = [ | |
"computer_network", | |
"operating_system", | |
"computer_architecture", | |
"college_programming", | |
"college_physics", | |
"college_chemistry", | |
"advanced_mathematics", | |
"probability_and_statistics", | |
"discrete_mathematics", | |
"electrical_engineer", | |
"metrology_engineer", | |
"high_school_mathematics", | |
"high_school_physics", | |
"high_school_chemistry", | |
"high_school_biology", | |
"middle_school_mathematics", | |
"middle_school_biology", | |
"middle_school_physics", | |
"middle_school_chemistry", | |
"veterinary_medicine", | |
"college_economics", | |
"business_administration", | |
"marxism", | |
"mao_zedong_thought", | |
"education_science", | |
"teacher_qualification", | |
"high_school_politics", | |
"high_school_geography", | |
"middle_school_politics", | |
"middle_school_geography", | |
"modern_chinese_history", | |
"ideological_and_moral_cultivation", | |
"logic", | |
"law", | |
"chinese_language_and_literature", | |
"art_studies", | |
"professional_tour_guide", | |
"legal_professional", | |
"high_school_chinese", | |
"high_school_history", | |
"middle_school_history", | |
"civil_servant", | |
"sports_science", | |
"plant_protection", | |
"basic_medicine", | |
"clinical_medicine", | |
"urban_and_rural_planner", | |
"accountant", | |
"fire_engineer", | |
"environmental_impact_assessment_engineer", | |
"tax_accountant", | |
"physician", | |
] | |
class CevalConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
class Ceval(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
CevalConfig( | |
name=task_name, | |
) | |
for task_name in task_list | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"question": datasets.Value("string"), | |
"A": datasets.Value("string"), | |
"B": datasets.Value("string"), | |
"C": datasets.Value("string"), | |
"D": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"explanation": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URL) | |
task_name = self.config.name | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
df = pd.read_csv(filepath, encoding="utf-8") | |
for i, instance in enumerate(df.to_dict(orient="records")): | |
if "answer" not in instance.keys(): | |
instance["answer"] = "" | |
if "explanation" not in instance.keys(): | |
instance["explanation"] = "" | |
yield i, instance | |