import gradio as gr import subprocess import os from PIL import Image def resize_image(image_path, target_height, output_path): # Open the image file with Image.open(image_path) as img: # Calculate the ratio to resize the image to the target height ratio = target_height / float(img.size[1]) # Calculate the new width based on the aspect ratio new_width = int(float(img.size[0]) * ratio) # Resize the image resized_img = img.resize((new_width, target_height), Image.LANCZOS) # Save the resized image resized_img.save(output_path) return output_path def generate(image, prompt, seed): print(image, prompt, seed) image_path = os.path.splitext(image)[0] image_name = os.path.basename(image_path) resized=resize_image(image, 512, f"output/{image_name}.jpg") print(f"IMAGE NAME: {image_name}") command = f"python handrefiner.py --input_img {resized} --out_dir output --strength 0.55 --weights models/inpaint_depth_control.ckpt --prompt '{prompt}' --seed {seed}" try: result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) output_path = 'output' print("Output:", result.stdout) print(output_path) # List all files and directories in the given directory contents = os.listdir("output") # Print the contents for item in contents: print(item) return f"output/{image_name}_0.jpg" except subprocess.CalledProcessError as e: print("Error:", e.stderr) return None css=""" #col-container{ max-width: 860px; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""

HandRefiner

Refining Malformed Hands in Generated Images by Diffusion-based Conditional Inpainting
For demo purpose, every input images are resized to 512 height ratio

Duplicate this Space

""") with gr.Row(): with gr.Column(): image = gr.Image(type='filepath', sources=["upload"]) gr.Examples( examples = [ "examples/IMG_1050.jpeg", "examples/IMG_1051.jpeg", "examples/IMG_1052.jpeg", "examples/IMG_1053.jpeg" ], inputs = [image] ) textbox = gr.Textbox(show_label=False, value="a person facing the camera, making a hand gesture, indoor") seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, value=42) button = gr.Button("Submit") output_image = gr.Image(label="Fixed hands result") button.click(fn=generate, inputs=[image, textbox, seed], outputs=[output_image]) demo.queue(max_size=10).launch(debug=True)