Spaces:
Paused
Paused
import os | |
import torch | |
import gradio as gr | |
import subprocess | |
import datetime | |
import sys | |
def run_command(command): | |
"""Run a shell command and return its output and error status.""" | |
print(f"Running command: {command}") | |
try: | |
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True) | |
return True, result.stdout | |
except subprocess.CalledProcessError as e: | |
return False, f"Error running command: {e}\nOutput: {e.output}\nError: {e.stderr}" | |
def check_for_mp4_in_outputs(given_folder): | |
outputs_folder = given_folder | |
if not os.path.exists(outputs_folder): | |
return None | |
mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')] | |
return os.path.join(outputs_folder, mp4_files[0]) if mp4_files else None | |
def infer(input_video, cropped_and_aligned): | |
try: | |
torch.cuda.empty_cache() | |
filepath = input_video | |
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
output_folder_name = f"results_{timestamp}" | |
if cropped_and_aligned: | |
command = f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --has_aligned --save_video -s=1" | |
else: | |
command = f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --draw_box --save_video -s=1 --bg_upsampler=realesrgan" | |
success, output = run_command(command) | |
if not success: | |
return None, output # Return None for the video and the error message | |
torch.cuda.empty_cache() | |
this_infer_folder = os.path.splitext(os.path.basename(filepath))[0] | |
joined_path = os.path.join(output_folder_name, this_infer_folder) | |
mp4_file_path = check_for_mp4_in_outputs(joined_path) | |
if mp4_file_path: | |
print(f"RESULT: {mp4_file_path}") | |
return mp4_file_path, "Processing completed successfully." | |
else: | |
return None, "Processing completed, but no output video was found." | |
except Exception as e: | |
return None, f"An unexpected error occurred: {str(e)}" | |
# Gradio interface setup | |
result_video = gr.Video() | |
error_output = gr.Textbox(label="Status/Error") | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# KEEP") | |
gr.Markdown("## Kalman-Inspired Feature Propagation for Video Face Super-Resolution") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href='https://jnjaby.github.io/projects/KEEP/'> | |
<img src='https://img.shields.io/badge/Project-Page-Green'> | |
</a> | |
<a href='https://arxiv.org/abs/2408.05205'> | |
<img src='https://img.shields.io/badge/Paper-Arxiv-red'> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label="Input Video") | |
is_cropped_and_aligned = gr.Checkbox(label="Synthetic data", info="Is your input video ready with cropped and aligned faces ?", value=False) | |
submit_btn = gr.Button("Submit") | |
gr.Examples( | |
examples = [ | |
["./assets/examples/synthetic_1.mp4", True], | |
["./assets/examples/synthetic_2.mp4", True], | |
["./assets/examples/synthetic_3.mp4", True], | |
["./assets/examples/synthetic_4.mp4", True], | |
["./assets/examples/real_1.mp4", False], | |
["./assets/examples/real_2.mp4", False], | |
["./assets/examples/real_3.mp4", False], | |
["./assets/examples/real_4.mp4", False] | |
], | |
fn = infer, | |
inputs = [input_video, is_cropped_and_aligned], | |
outputs = [result_video, error_output], | |
run_on_click = False, | |
cache_examples = "lazy" | |
) | |
with gr.Column(): | |
result_video.render() | |
error_output.render() | |
submit_btn.click( | |
fn = infer, | |
inputs = [input_video, is_cropped_and_aligned], | |
outputs = [result_video, error_output], | |
show_api=False | |
) | |
demo.queue().launch(show_error=True, show_api=False) |