File size: 6,873 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py

import torch
import numpy
import time, pdb, argparse, subprocess, os, math, glob
import cv2
import python_speech_features

from scipy import signal
from scipy.io import wavfile
from .syncnet import S
from shutil import rmtree


# ==================== Get OFFSET ====================

# Video 25 FPS, Audio 16000HZ


def calc_pdist(feat1, feat2, vshift=10):
    win_size = vshift * 2 + 1

    feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))

    dists = []

    for i in range(0, len(feat1)):

        dists.append(
            torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
        )

    return dists


# ==================== MAIN DEF ====================


class SyncNetEval(torch.nn.Module):
    def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
        super().__init__()

        self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
        self.device = device

    def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):

        self.__S__.eval()

        # ========== ==========
        # Convert files
        # ========== ==========

        if os.path.exists(temp_dir):
            rmtree(temp_dir)

        os.makedirs(temp_dir)

        # temp_video_path = os.path.join(temp_dir, "temp.mp4")
        # command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
        # subprocess.call(command, shell=True)

        command = (
            f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
        )
        subprocess.call(command, shell=True, stdout=None)

        command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
        subprocess.call(command, shell=True, stdout=None)

        # ========== ==========
        # Load video
        # ========== ==========

        images = []

        flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
        flist.sort()

        for fname in flist:
            img_input = cv2.imread(fname)
            img_input = cv2.resize(img_input, (224, 224))  # HARD CODED, CHANGE BEFORE RELEASE
            images.append(img_input)

        im = numpy.stack(images, axis=3)
        im = numpy.expand_dims(im, axis=0)
        im = numpy.transpose(im, (0, 3, 4, 1, 2))

        imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())

        # ========== ==========
        # Load audio
        # ========== ==========

        sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
        mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
        mfcc = numpy.stack([numpy.array(i) for i in mfcc])

        cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
        cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())

        # ========== ==========
        # Check audio and video input length
        # ========== ==========

        # if (float(len(audio)) / 16000) != (float(len(images)) / 25):
        #     print(
        #         "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
        #         % (float(len(audio)) / 16000, float(len(images)) / 25)
        #     )

        min_length = min(len(images), math.floor(len(audio) / 640))

        # ========== ==========
        # Generate video and audio feats
        # ========== ==========

        lastframe = min_length - 5
        im_feat = []
        cc_feat = []

        tS = time.time()
        for i in range(0, lastframe, batch_size):

            im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
            im_in = torch.cat(im_batch, 0)
            im_out = self.__S__.forward_lip(im_in.to(self.device))
            im_feat.append(im_out.data.cpu())

            cc_batch = [
                cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
            ]
            cc_in = torch.cat(cc_batch, 0)
            cc_out = self.__S__.forward_aud(cc_in.to(self.device))
            cc_feat.append(cc_out.data.cpu())

        im_feat = torch.cat(im_feat, 0)
        cc_feat = torch.cat(cc_feat, 0)

        # ========== ==========
        # Compute offset
        # ========== ==========

        dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
        mean_dists = torch.mean(torch.stack(dists, 1), 1)

        min_dist, minidx = torch.min(mean_dists, 0)

        av_offset = vshift - minidx
        conf = torch.median(mean_dists) - min_dist

        fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
        # fdist   = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
        fconf = torch.median(mean_dists).numpy() - fdist
        framewise_conf = signal.medfilt(fconf, kernel_size=9)

        # numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
        rmtree(temp_dir)
        return av_offset.item(), min_dist.item(), conf.item()

    def extract_feature(self, opt, videofile):

        self.__S__.eval()

        # ========== ==========
        # Load video
        # ========== ==========
        cap = cv2.VideoCapture(videofile)

        frame_num = 1
        images = []
        while frame_num:
            frame_num += 1
            ret, image = cap.read()
            if ret == 0:
                break

            images.append(image)

        im = numpy.stack(images, axis=3)
        im = numpy.expand_dims(im, axis=0)
        im = numpy.transpose(im, (0, 3, 4, 1, 2))

        imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())

        # ========== ==========
        # Generate video feats
        # ========== ==========

        lastframe = len(images) - 4
        im_feat = []

        tS = time.time()
        for i in range(0, lastframe, opt.batch_size):

            im_batch = [
                imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
            ]
            im_in = torch.cat(im_batch, 0)
            im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
            im_feat.append(im_out.data.cpu())

        im_feat = torch.cat(im_feat, 0)

        # ========== ==========
        # Compute offset
        # ========== ==========

        print("Compute time %.3f sec." % (time.time() - tS))

        return im_feat

    def loadParameters(self, path):
        loaded_state = torch.load(path, map_location=lambda storage, loc: storage)

        self_state = self.__S__.state_dict()

        for name, param in loaded_state.items():

            self_state[name].copy_(param)