Spaces:
Running
on
Zero
Running
on
Zero
| import inspect | |
| import warnings | |
| from typing import Callable, List, Optional, Union, Dict, Any | |
| import PIL | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel | |
| from diffusers.utils.import_utils import is_accelerate_available | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.embeddings import get_timestep_embedding | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import deprecate, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
| import os | |
| import torchvision.transforms.functional as TF | |
| from einops import rearrange | |
| logger = logging.get_logger(__name__) | |
| class StableUnCLIPImg2ImgPipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for text-guided image to image generation using stable unCLIP. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Feature extractor for image pre-processing before being encoded. | |
| image_encoder ([`CLIPVisionModelWithProjection`]): | |
| CLIP vision model for encoding images. | |
| image_normalizer ([`StableUnCLIPImageNormalizer`]): | |
| Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image | |
| embeddings after the noise has been applied. | |
| image_noising_scheduler ([`KarrasDiffusionSchedulers`]): | |
| Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined | |
| by `noise_level` in `StableUnCLIPPipeline.__call__`. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`KarrasDiffusionSchedulers`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| """ | |
| # image encoding components | |
| feature_extractor: CLIPFeatureExtractor | |
| image_encoder: CLIPVisionModelWithProjection | |
| # image noising components | |
| image_normalizer: StableUnCLIPImageNormalizer | |
| image_noising_scheduler: KarrasDiffusionSchedulers | |
| # regular denoising components | |
| tokenizer: CLIPTokenizer | |
| text_encoder: CLIPTextModel | |
| unet: UNet2DConditionModel | |
| scheduler: KarrasDiffusionSchedulers | |
| vae: AutoencoderKL | |
| def __init__( | |
| self, | |
| # image encoding components | |
| feature_extractor: CLIPFeatureExtractor, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| # image noising components | |
| image_normalizer: StableUnCLIPImageNormalizer, | |
| image_noising_scheduler: KarrasDiffusionSchedulers, | |
| # regular denoising components | |
| tokenizer: CLIPTokenizer, | |
| text_encoder: CLIPTextModel, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| # vae | |
| vae: AutoencoderKL, | |
| num_views: int = 7, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| image_normalizer=image_normalizer, | |
| image_noising_scheduler=image_noising_scheduler, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| vae=vae, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.num_views: int = num_views | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
| steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | |
| models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | |
| when their specific submodule has its `forward` method called. | |
| """ | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| # TODO: self.image_normalizer.{scale,unscale} are not covered by the offload hooks, so they fails if added to the list | |
| models = [ | |
| self.image_encoder, | |
| self.text_encoder, | |
| self.unet, | |
| self.vae, | |
| ] | |
| for cpu_offloaded_model in models: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| if do_classifier_free_guidance: | |
| normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0) | |
| prompt_embeds = torch.cat([normal_prompt_embeds, normal_prompt_embeds, color_prompt_embeds, color_prompt_embeds], 0) | |
| return prompt_embeds | |
| def _encode_image( | |
| self, | |
| image_pil, | |
| smpl_pil, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| noise_level: int=0, | |
| generator: Optional[torch.Generator] = None | |
| ): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| # ______________________________clip image embedding______________________________ | |
| image = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = self.noise_image_embeddings( | |
| image_embeds=image_embeds, | |
| noise_level=noise_level, | |
| generator=generator, | |
| ) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| # image_embeds = image_embeds.unsqueeze(1) | |
| # note: the condition input is same | |
| image_embeds = image_embeds.repeat(num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| normal_image_embeds, color_image_embeds = torch.chunk(image_embeds, 2, dim=0) | |
| negative_prompt_embeds = torch.zeros_like(normal_image_embeds) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeds = torch.cat([negative_prompt_embeds, normal_image_embeds, negative_prompt_embeds, color_image_embeds], 0) | |
| # _____________________________vae input latents__________________________________________________ | |
| def vae_encode(tensor): | |
| image_pt = torch.stack([TF.to_tensor(img) for img in tensor], dim=0).to(device) | |
| image_pt = image_pt * 2.0 - 1.0 | |
| image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor | |
| # Note: repeat differently from official pipelines | |
| image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1) | |
| return image_latents | |
| image_latents = vae_encode(image_pil) | |
| if smpl_pil is not None: | |
| smpl_latents = vae_encode(smpl_pil) | |
| image_latents = torch.cat([image_latents, smpl_latents], 1) | |
| if do_classifier_free_guidance: | |
| normal_image_latents, color_image_latents = torch.chunk(image_latents, 2, dim=0) | |
| image_latents = torch.cat([torch.zeros_like(normal_image_latents), normal_image_latents, | |
| torch.zeros_like(color_image_latents), color_image_latents], 0) | |
| return image_embeds, image_latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| image, | |
| height, | |
| width, | |
| callback_steps, | |
| noise_level, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: | |
| raise ValueError( | |
| f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings | |
| def noise_image_embeddings( | |
| self, | |
| image_embeds: torch.Tensor, | |
| noise_level: int, | |
| noise: Optional[torch.FloatTensor] = None, | |
| generator: Optional[torch.Generator] = None, | |
| ): | |
| """ | |
| Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher | |
| `noise_level` increases the variance in the final un-noised images. | |
| The noise is applied in two ways | |
| 1. A noise schedule is applied directly to the embeddings | |
| 2. A vector of sinusoidal time embeddings are appended to the output. | |
| In both cases, the amount of noise is controlled by the same `noise_level`. | |
| The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. | |
| """ | |
| if noise is None: | |
| noise = randn_tensor( | |
| image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype | |
| ) | |
| noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) | |
| image_embeds = self.image_normalizer.scale(image_embeds) | |
| image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) | |
| image_embeds = self.image_normalizer.unscale(image_embeds) | |
| noise_level = get_timestep_embedding( | |
| timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 | |
| ) | |
| # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors, | |
| # but we might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| noise_level = noise_level.to(image_embeds.dtype) | |
| image_embeds = torch.cat((image_embeds, noise_level), 1) | |
| return image_embeds | |
| def process_dino_feature(self, feat, device, num_images_per_prompt, do_classifier_free_guidance): | |
| feat = feat.to(dtype=self.text_encoder.dtype, device=device) | |
| if do_classifier_free_guidance: | |
| # # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| # seq_len = negative_prompt_embeds.shape[1] | |
| # negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| # negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| feat = torch.cat([feat, feat], 0) | |
| return feat | |
| # @replace_example_docstring(EXAMPLE_DOC_STRING) | |
| def __call__( | |
| self, | |
| image: Union[torch.FloatTensor, PIL.Image.Image], | |
| prompt: Union[str, List[str]], | |
| prompt_embeds: torch.FloatTensor = None, | |
| dino_feature: torch.FloatTensor = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 20, | |
| guidance_scale: float = 10, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| noise_level: int = 0, | |
| image_embeds: Optional[torch.FloatTensor] = None, | |
| gt_img_in: Optional[torch.FloatTensor] = None, | |
| smpl_in: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which | |
| the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the | |
| latents in the denoising process such as in the standard stable diffusion text guided image variation | |
| process. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 20): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 10.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| noise_level (`int`, *optional*, defaults to `0`): | |
| The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in | |
| the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details. | |
| image_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in | |
| the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as | |
| `latents`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is | |
| True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt=prompt, | |
| image=image, | |
| height=height, | |
| width=width, | |
| callback_steps=callback_steps, | |
| noise_level=noise_level | |
| ) | |
| # 2. Define call parameters | |
| if isinstance(image, list): | |
| batch_size = len(image) | |
| elif isinstance(image, torch.Tensor): | |
| batch_size = image.shape[0] | |
| assert batch_size >= self.num_views and batch_size % self.num_views == 0 | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image]*self.num_views*2 | |
| batch_size = self.num_views*2 | |
| if isinstance(prompt, str): | |
| prompt = [prompt] * self.num_views * 2 | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale != 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds = self._encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| if dino_feature is not None: | |
| dino_feature = self.process_dino_feature(dino_feature, device=device, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| num_images_per_prompt=num_images_per_prompt) | |
| # 4. Encoder input image | |
| if isinstance(image, list): | |
| image_pil = image | |
| smpl_pil = smpl_in | |
| elif isinstance(image, torch.Tensor): | |
| image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] | |
| smpl_pil = [TF.to_pil_image(smpl_in[i]) for i in range(smpl_in.shape[0])] if smpl_in is not None else None | |
| noise_level = torch.tensor([noise_level], device=device) | |
| image_embeds, image_latents = self._encode_image( | |
| image_pil=image_pil, | |
| smpl_pil=smpl_pil, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| noise_level=noise_level, | |
| generator=generator, | |
| ) | |
| # 5. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.out_channels | |
| if gt_img_in is not None: | |
| latents = gt_img_in * self.scheduler.init_noise_sigma | |
| else: | |
| latents = self.prepare_latents( | |
| batch_size=batch_size, | |
| num_channels_latents=num_channels_latents, | |
| height=height, | |
| width=width, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| latents=latents, | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| eles, focals = [], [] | |
| # 8. Denoising loop | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| if do_classifier_free_guidance: | |
| normal_latents, color_latents = torch.chunk(latents, 2, dim=0) | |
| latent_model_input = torch.cat([normal_latents, normal_latents, color_latents, color_latents], 0) | |
| else: | |
| latent_model_input = latents | |
| latent_model_input = torch.cat([ | |
| latent_model_input, image_latents | |
| ], dim=1) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| unet_out = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| dino_feature=dino_feature, | |
| class_labels=image_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False) | |
| noise_pred = unet_out[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| normal_noise_pred_uncond, normal_noise_pred_text, color_noise_pred_uncond, color_noise_pred_text = torch.chunk(noise_pred, 4, dim=0) | |
| noise_pred_uncond, noise_pred_text = torch.cat([normal_noise_pred_uncond, color_noise_pred_uncond], 0), torch.cat([normal_noise_pred_text, color_noise_pred_text], 0) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 9. Post-processing | |
| if not output_type == "latent": | |
| if num_channels_latents == 8: | |
| latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0) | |
| with torch.no_grad(): | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload last model to CPU | |
| # if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| # self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, ) | |
| return ImagePipelineOutput(images=image) | |