Spaces:
Running
on
Zero
Running
on
Zero
| import os, torch, json, importlib | |
| from typing import List | |
| from .downloader import ( | |
| download_models, | |
| download_customized_models, | |
| Preset_model_id, | |
| Preset_model_website, | |
| ) | |
| from configs.model_config import ( | |
| model_loader_configs, | |
| huggingface_model_loader_configs, | |
| patch_model_loader_configs, | |
| ) | |
| from .utils import ( | |
| load_state_dict, | |
| init_weights_on_device, | |
| hash_state_dict_keys, | |
| split_state_dict_with_prefix, | |
| ) | |
| def load_model_from_single_file( | |
| state_dict, model_names, model_classes, model_resource, torch_dtype, device | |
| ): | |
| loaded_model_names, loaded_models = [], [] | |
| for model_name, model_class in zip(model_names, model_classes): | |
| print(f" model_name: {model_name} model_class: {model_class.__name__}") | |
| state_dict_converter = model_class.state_dict_converter() | |
| if model_resource == "civitai": | |
| state_dict_results = state_dict_converter.from_civitai(state_dict) | |
| elif model_resource == "diffusers": | |
| state_dict_results = state_dict_converter.from_diffusers(state_dict) | |
| if isinstance(state_dict_results, tuple): | |
| model_state_dict, extra_kwargs = state_dict_results | |
| print( | |
| f" This model is initialized with extra kwargs: {extra_kwargs}" | |
| ) | |
| else: | |
| model_state_dict, extra_kwargs = state_dict_results, {} | |
| torch_dtype = ( | |
| torch.float32 | |
| if extra_kwargs.get("upcast_to_float32", False) | |
| else torch_dtype | |
| ) | |
| with init_weights_on_device(): | |
| model = model_class(**extra_kwargs) | |
| if hasattr(model, "eval"): | |
| model = model.eval() | |
| model.load_state_dict(model_state_dict, assign=True) | |
| model = model.to(dtype=torch_dtype, device=device) | |
| loaded_model_names.append(model_name) | |
| loaded_models.append(model) | |
| return loaded_model_names, loaded_models | |
| def load_model_from_huggingface_folder( | |
| file_path, model_names, model_classes, torch_dtype, device | |
| ): | |
| loaded_model_names, loaded_models = [], [] | |
| for model_name, model_class in zip(model_names, model_classes): | |
| if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]: | |
| model = model_class.from_pretrained( | |
| file_path, torch_dtype=torch_dtype | |
| ).eval() | |
| else: | |
| model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype) | |
| if torch_dtype == torch.float16 and hasattr(model, "half"): | |
| model = model.half() | |
| try: | |
| model = model.to(device=device) | |
| except: | |
| pass | |
| loaded_model_names.append(model_name) | |
| loaded_models.append(model) | |
| return loaded_model_names, loaded_models | |
| def load_single_patch_model_from_single_file( | |
| state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device | |
| ): | |
| print( | |
| f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}" | |
| ) | |
| base_state_dict = base_model.state_dict() | |
| base_model.to("cpu") | |
| del base_model | |
| model = model_class(**extra_kwargs) | |
| model.load_state_dict(base_state_dict, strict=False) | |
| model.load_state_dict(state_dict, strict=False) | |
| model.to(dtype=torch_dtype, device=device) | |
| return model | |
| def load_patch_model_from_single_file( | |
| state_dict, | |
| model_names, | |
| model_classes, | |
| extra_kwargs, | |
| model_manager, | |
| torch_dtype, | |
| device, | |
| ): | |
| loaded_model_names, loaded_models = [], [] | |
| for model_name, model_class in zip(model_names, model_classes): | |
| while True: | |
| for model_id in range(len(model_manager.model)): | |
| base_model_name = model_manager.model_name[model_id] | |
| if base_model_name == model_name: | |
| base_model_path = model_manager.model_path[model_id] | |
| base_model = model_manager.model[model_id] | |
| print( | |
| f" Adding patch model to {base_model_name} ({base_model_path})" | |
| ) | |
| patched_model = load_single_patch_model_from_single_file( | |
| state_dict, | |
| model_name, | |
| model_class, | |
| base_model, | |
| extra_kwargs, | |
| torch_dtype, | |
| device, | |
| ) | |
| loaded_model_names.append(base_model_name) | |
| loaded_models.append(patched_model) | |
| model_manager.model.pop(model_id) | |
| model_manager.model_path.pop(model_id) | |
| model_manager.model_name.pop(model_id) | |
| break | |
| else: | |
| break | |
| return loaded_model_names, loaded_models | |
| class ModelDetectorTemplate: | |
| def __init__(self): | |
| pass | |
| def match(self, file_path="", state_dict={}): | |
| return False | |
| def load( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| device="cuda", | |
| torch_dtype=torch.float16, | |
| **kwargs, | |
| ): | |
| return [], [] | |
| class ModelDetectorFromSingleFile: | |
| def __init__(self, model_loader_configs=[]): | |
| self.keys_hash_with_shape_dict = {} | |
| self.keys_hash_dict = {} | |
| for metadata in model_loader_configs: | |
| self.add_model_metadata(*metadata) | |
| def add_model_metadata( | |
| self, | |
| keys_hash, | |
| keys_hash_with_shape, | |
| model_names, | |
| model_classes, | |
| model_resource, | |
| ): | |
| self.keys_hash_with_shape_dict[keys_hash_with_shape] = ( | |
| model_names, | |
| model_classes, | |
| model_resource, | |
| ) | |
| if keys_hash is not None: | |
| self.keys_hash_dict[keys_hash] = ( | |
| model_names, | |
| model_classes, | |
| model_resource, | |
| ) | |
| def match(self, file_path="", state_dict={}): | |
| if isinstance(file_path, str) and os.path.isdir(file_path): | |
| return False | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
| if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
| return True | |
| keys_hash = hash_state_dict_keys(state_dict, with_shape=False) | |
| if keys_hash in self.keys_hash_dict: | |
| return True | |
| return False | |
| def load( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| device="cuda", | |
| torch_dtype=torch.float16, | |
| **kwargs, | |
| ): | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| # Load models with strict matching | |
| keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
| if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
| model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[ | |
| keys_hash_with_shape | |
| ] | |
| loaded_model_names, loaded_models = load_model_from_single_file( | |
| state_dict, | |
| model_names, | |
| model_classes, | |
| model_resource, | |
| torch_dtype, | |
| device, | |
| ) | |
| return loaded_model_names, loaded_models | |
| # Load models without strict matching | |
| # (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture) | |
| keys_hash = hash_state_dict_keys(state_dict, with_shape=False) | |
| if keys_hash in self.keys_hash_dict: | |
| model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash] | |
| loaded_model_names, loaded_models = load_model_from_single_file( | |
| state_dict, | |
| model_names, | |
| model_classes, | |
| model_resource, | |
| torch_dtype, | |
| device, | |
| ) | |
| return loaded_model_names, loaded_models | |
| return loaded_model_names, loaded_models | |
| class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile): | |
| def __init__(self, model_loader_configs=[]): | |
| super().__init__(model_loader_configs) | |
| def match(self, file_path="", state_dict={}): | |
| if isinstance(file_path, str) and os.path.isdir(file_path): | |
| return False | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| splited_state_dict = split_state_dict_with_prefix(state_dict) | |
| for sub_state_dict in splited_state_dict: | |
| if super().match(file_path, sub_state_dict): | |
| return True | |
| return False | |
| def load( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| device="cuda", | |
| torch_dtype=torch.float16, | |
| **kwargs, | |
| ): | |
| # Split the state_dict and load from each component | |
| splited_state_dict = split_state_dict_with_prefix(state_dict) | |
| valid_state_dict = {} | |
| for sub_state_dict in splited_state_dict: | |
| if super().match(file_path, sub_state_dict): | |
| valid_state_dict.update(sub_state_dict) | |
| if super().match(file_path, valid_state_dict): | |
| loaded_model_names, loaded_models = super().load( | |
| file_path, valid_state_dict, device, torch_dtype | |
| ) | |
| else: | |
| loaded_model_names, loaded_models = [], [] | |
| for sub_state_dict in splited_state_dict: | |
| if super().match(file_path, sub_state_dict): | |
| loaded_model_names_, loaded_models_ = super().load( | |
| file_path, valid_state_dict, device, torch_dtype | |
| ) | |
| loaded_model_names += loaded_model_names_ | |
| loaded_models += loaded_models_ | |
| return loaded_model_names, loaded_models | |
| class ModelDetectorFromHuggingfaceFolder: | |
| def __init__(self, model_loader_configs=[]): | |
| self.architecture_dict = {} | |
| for metadata in model_loader_configs: | |
| self.add_model_metadata(*metadata) | |
| def add_model_metadata( | |
| self, architecture, huggingface_lib, model_name, redirected_architecture | |
| ): | |
| self.architecture_dict[architecture] = ( | |
| huggingface_lib, | |
| model_name, | |
| redirected_architecture, | |
| ) | |
| def match(self, file_path="", state_dict={}): | |
| if not isinstance(file_path, str) or os.path.isfile(file_path): | |
| return False | |
| file_list = os.listdir(file_path) | |
| if "config.json" not in file_list: | |
| return False | |
| with open(os.path.join(file_path, "config.json"), "r") as f: | |
| config = json.load(f) | |
| if "architectures" not in config and "_class_name" not in config: | |
| return False | |
| return True | |
| def load( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| device="cuda", | |
| torch_dtype=torch.float16, | |
| **kwargs, | |
| ): | |
| with open(os.path.join(file_path, "config.json"), "r") as f: | |
| config = json.load(f) | |
| loaded_model_names, loaded_models = [], [] | |
| architectures = ( | |
| config["architectures"] | |
| if "architectures" in config | |
| else [config["_class_name"]] | |
| ) | |
| for architecture in architectures: | |
| huggingface_lib, model_name, redirected_architecture = ( | |
| self.architecture_dict[architecture] | |
| ) | |
| if redirected_architecture is not None: | |
| architecture = redirected_architecture | |
| model_class = importlib.import_module(huggingface_lib).__getattribute__( | |
| architecture | |
| ) | |
| loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder( | |
| file_path, [model_name], [model_class], torch_dtype, device | |
| ) | |
| loaded_model_names += loaded_model_names_ | |
| loaded_models += loaded_models_ | |
| return loaded_model_names, loaded_models | |
| class ModelDetectorFromPatchedSingleFile: | |
| def __init__(self, model_loader_configs=[]): | |
| self.keys_hash_with_shape_dict = {} | |
| for metadata in model_loader_configs: | |
| self.add_model_metadata(*metadata) | |
| def add_model_metadata( | |
| self, keys_hash_with_shape, model_name, model_class, extra_kwargs | |
| ): | |
| self.keys_hash_with_shape_dict[keys_hash_with_shape] = ( | |
| model_name, | |
| model_class, | |
| extra_kwargs, | |
| ) | |
| def match(self, file_path="", state_dict={}): | |
| if not isinstance(file_path, str) or os.path.isdir(file_path): | |
| return False | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
| if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
| return True | |
| return False | |
| def load( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| device="cuda", | |
| torch_dtype=torch.float16, | |
| model_manager=None, | |
| **kwargs, | |
| ): | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| # Load models with strict matching | |
| loaded_model_names, loaded_models = [], [] | |
| keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) | |
| if keys_hash_with_shape in self.keys_hash_with_shape_dict: | |
| model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[ | |
| keys_hash_with_shape | |
| ] | |
| loaded_model_names_, loaded_models_ = load_patch_model_from_single_file( | |
| state_dict, | |
| model_names, | |
| model_classes, | |
| extra_kwargs, | |
| model_manager, | |
| torch_dtype, | |
| device, | |
| ) | |
| loaded_model_names += loaded_model_names_ | |
| loaded_models += loaded_models_ | |
| return loaded_model_names, loaded_models | |
| class ModelManager: | |
| def __init__( | |
| self, | |
| torch_dtype=torch.float16, | |
| device="cuda", | |
| model_id_list: List[Preset_model_id] = [], | |
| downloading_priority: List[Preset_model_website] = [ | |
| "ModelScope", | |
| "HuggingFace", | |
| ], | |
| file_path_list: List[str] = [], | |
| ): | |
| self.torch_dtype = torch_dtype | |
| self.device = device | |
| self.model = [] | |
| self.model_path = [] | |
| self.model_name = [] | |
| downloaded_files = ( | |
| download_models(model_id_list, downloading_priority) | |
| if len(model_id_list) > 0 | |
| else [] | |
| ) | |
| self.model_detector = [ | |
| ModelDetectorFromSingleFile(model_loader_configs), | |
| ModelDetectorFromSplitedSingleFile(model_loader_configs), | |
| ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs), | |
| ModelDetectorFromPatchedSingleFile(patch_model_loader_configs), | |
| ] | |
| self.load_models(downloaded_files + file_path_list) | |
| def load_model_from_single_file( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| model_names=[], | |
| model_classes=[], | |
| model_resource=None, | |
| ): | |
| print(f"Loading models from file: {file_path}") | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| model_names, models = load_model_from_single_file( | |
| state_dict, | |
| model_names, | |
| model_classes, | |
| model_resource, | |
| self.torch_dtype, | |
| self.device, | |
| ) | |
| for model_name, model in zip(model_names, models): | |
| self.model.append(model) | |
| self.model_path.append(file_path) | |
| self.model_name.append(model_name) | |
| print(f" The following models are loaded: {model_names}.") | |
| def load_model_from_huggingface_folder( | |
| self, file_path="", model_names=[], model_classes=[] | |
| ): | |
| print(f"Loading models from folder: {file_path}") | |
| model_names, models = load_model_from_huggingface_folder( | |
| file_path, model_names, model_classes, self.torch_dtype, self.device | |
| ) | |
| for model_name, model in zip(model_names, models): | |
| self.model.append(model) | |
| self.model_path.append(file_path) | |
| self.model_name.append(model_name) | |
| print(f" The following models are loaded: {model_names}.") | |
| def load_patch_model_from_single_file( | |
| self, | |
| file_path="", | |
| state_dict={}, | |
| model_names=[], | |
| model_classes=[], | |
| extra_kwargs={}, | |
| ): | |
| print(f"Loading patch models from file: {file_path}") | |
| model_names, models = load_patch_model_from_single_file( | |
| state_dict, | |
| model_names, | |
| model_classes, | |
| extra_kwargs, | |
| self, | |
| self.torch_dtype, | |
| self.device, | |
| ) | |
| for model_name, model in zip(model_names, models): | |
| self.model.append(model) | |
| self.model_path.append(file_path) | |
| self.model_name.append(model_name) | |
| print(f" The following patched models are loaded: {model_names}.") | |
| def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0): | |
| if isinstance(file_path, list): | |
| for file_path_ in file_path: | |
| self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha) | |
| else: | |
| print(f"Loading LoRA models from file: {file_path}") | |
| is_loaded = False | |
| if len(state_dict) == 0: | |
| state_dict = load_state_dict(file_path) | |
| for model_name, model, model_path in zip( | |
| self.model_name, self.model, self.model_path | |
| ): | |
| for lora in get_lora_loaders(): | |
| match_results = lora.match(model, state_dict) | |
| if match_results is not None: | |
| print(f" Adding LoRA to {model_name} ({model_path}).") | |
| lora_prefix, model_resource = match_results | |
| lora.load( | |
| model, | |
| state_dict, | |
| lora_prefix, | |
| alpha=lora_alpha, | |
| model_resource=model_resource, | |
| ) | |
| is_loaded = True | |
| break | |
| if not is_loaded: | |
| print(f" Cannot load LoRA: {file_path}") | |
| def load_model(self, file_path, model_names=None, device=None, torch_dtype=None): | |
| print(f"Loading models from: {file_path}") | |
| if device is None: | |
| device = self.device | |
| if torch_dtype is None: | |
| torch_dtype = self.torch_dtype | |
| if isinstance(file_path, list): | |
| state_dict = {} | |
| for path in file_path: | |
| state_dict.update(load_state_dict(path)) | |
| elif os.path.isfile(file_path): | |
| state_dict = load_state_dict(file_path) | |
| else: | |
| state_dict = None | |
| for model_detector in self.model_detector: | |
| if model_detector.match(file_path, state_dict): | |
| model_names, models = model_detector.load( | |
| file_path, | |
| state_dict, | |
| device=device, | |
| torch_dtype=torch_dtype, | |
| allowed_model_names=model_names, | |
| model_manager=self, | |
| ) | |
| for model_name, model in zip(model_names, models): | |
| self.model.append(model) | |
| self.model_path.append(file_path) | |
| self.model_name.append(model_name) | |
| print(f" The following models are loaded: {model_names}.") | |
| break | |
| else: | |
| print(f" We cannot detect the model type. No models are loaded.") | |
| def load_models( | |
| self, file_path_list, model_names=None, device=None, torch_dtype=None | |
| ): | |
| for file_path in file_path_list: | |
| self.load_model( | |
| file_path, model_names, device=device, torch_dtype=torch_dtype | |
| ) | |
| def fetch_model( | |
| self, model_name, file_path=None, require_model_path=False, index=None | |
| ): | |
| fetched_models = [] | |
| fetched_model_paths = [] | |
| for model, model_path, model_name_ in zip( | |
| self.model, self.model_path, self.model_name | |
| ): | |
| if file_path is not None and file_path != model_path: | |
| continue | |
| if model_name == model_name_: | |
| fetched_models.append(model) | |
| fetched_model_paths.append(model_path) | |
| if len(fetched_models) == 0: | |
| print(f"No {model_name} models available.") | |
| return None | |
| if len(fetched_models) == 1: | |
| print(f"Using {model_name} from {fetched_model_paths[0]}.") | |
| model = fetched_models[0] | |
| path = fetched_model_paths[0] | |
| else: | |
| if index is None: | |
| model = fetched_models[0] | |
| path = fetched_model_paths[0] | |
| print( | |
| f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}." | |
| ) | |
| elif isinstance(index, int): | |
| model = fetched_models[:index] | |
| path = fetched_model_paths[:index] | |
| print( | |
| f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[:index]}." | |
| ) | |
| else: | |
| model = fetched_models | |
| path = fetched_model_paths | |
| print( | |
| f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths}." | |
| ) | |
| if require_model_path: | |
| return model, path | |
| else: | |
| return model | |
| def to(self, device): | |
| for model in self.model: | |
| model.to(device) | |