Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from .wan_video_dit import sinusoidal_embedding_1d | |
| class WanMotionControllerModel(torch.nn.Module): | |
| def __init__(self, freq_dim=256, dim=1536): | |
| super().__init__() | |
| self.freq_dim = freq_dim | |
| self.linear = nn.Sequential( | |
| nn.Linear(freq_dim, dim), | |
| nn.SiLU(), | |
| nn.Linear(dim, dim), | |
| nn.SiLU(), | |
| nn.Linear(dim, dim * 6), | |
| ) | |
| def forward(self, motion_bucket_id): | |
| emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10) | |
| emb = self.linear(emb) | |
| return emb | |
| def init(self): | |
| state_dict = self.linear[-1].state_dict() | |
| state_dict = {i: state_dict[i] * 0 for i in state_dict} | |
| self.linear[-1].load_state_dict(state_dict) | |
| def state_dict_converter(): | |
| return WanMotionControllerModelDictConverter() | |
| class WanMotionControllerModelDictConverter: | |
| def __init__(self): | |
| pass | |
| def from_diffusers(self, state_dict): | |
| return state_dict | |
| def from_civitai(self, state_dict): | |
| return state_dict | |