Spaces:
Running
on
Zero
Running
on
Zero
| import imageio, os, torch, warnings, torchvision, argparse, json | |
| from peft import LoraConfig, inject_adapter_in_model | |
| from PIL import Image | |
| import pandas as pd | |
| from tqdm import tqdm | |
| from accelerate import Accelerator | |
| class ImageDataset(torch.utils.data.Dataset): | |
| def __init__( | |
| self, | |
| base_path=None, | |
| metadata_path=None, | |
| max_pixels=1920 * 1080, | |
| height=None, | |
| width=None, | |
| height_division_factor=16, | |
| width_division_factor=16, | |
| data_file_keys=("image",), | |
| image_file_extension=("jpg", "jpeg", "png", "webp"), | |
| repeat=1, | |
| args=None, | |
| ): | |
| if args is not None: | |
| base_path = args.dataset_base_path | |
| metadata_path = args.dataset_metadata_path | |
| height = args.height | |
| width = args.width | |
| max_pixels = args.max_pixels | |
| data_file_keys = args.data_file_keys.split(",") | |
| repeat = args.dataset_repeat | |
| self.base_path = base_path | |
| self.max_pixels = max_pixels | |
| self.height = height | |
| self.width = width | |
| self.height_division_factor = height_division_factor | |
| self.width_division_factor = width_division_factor | |
| self.data_file_keys = data_file_keys | |
| self.image_file_extension = image_file_extension | |
| self.repeat = repeat | |
| if height is not None and width is not None: | |
| print("Height and width are fixed. Setting `dynamic_resolution` to False.") | |
| self.dynamic_resolution = False | |
| elif height is None and width is None: | |
| print("Height and width are none. Setting `dynamic_resolution` to True.") | |
| self.dynamic_resolution = True | |
| if metadata_path is None: | |
| print("No metadata. Trying to generate it.") | |
| metadata = self.generate_metadata(base_path) | |
| print(f"{len(metadata)} lines in metadata.") | |
| self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))] | |
| elif metadata_path.endswith(".json"): | |
| with open(metadata_path, "r") as f: | |
| metadata = json.load(f) | |
| self.data = metadata | |
| else: | |
| metadata = pd.read_csv(metadata_path) | |
| self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))] | |
| def generate_metadata(self, folder): | |
| image_list, prompt_list = [], [] | |
| file_set = set(os.listdir(folder)) | |
| for file_name in file_set: | |
| if "." not in file_name: | |
| continue | |
| file_ext_name = file_name.split(".")[-1].lower() | |
| file_base_name = file_name[: -len(file_ext_name) - 1] | |
| if file_ext_name not in self.image_file_extension: | |
| continue | |
| prompt_file_name = file_base_name + ".txt" | |
| if prompt_file_name not in file_set: | |
| continue | |
| with open( | |
| os.path.join(folder, prompt_file_name), "r", encoding="utf-8" | |
| ) as f: | |
| prompt = f.read().strip() | |
| image_list.append(file_name) | |
| prompt_list.append(prompt) | |
| metadata = pd.DataFrame() | |
| metadata["image"] = image_list | |
| metadata["prompt"] = prompt_list | |
| return metadata | |
| def crop_and_resize(self, image, target_height, target_width): | |
| width, height = image.size | |
| scale = max(target_width / width, target_height / height) | |
| image = torchvision.transforms.functional.resize( | |
| image, | |
| (round(height * scale), round(width * scale)), | |
| interpolation=torchvision.transforms.InterpolationMode.BILINEAR, | |
| ) | |
| image = torchvision.transforms.functional.center_crop( | |
| image, (target_height, target_width) | |
| ) | |
| return image | |
| def get_height_width(self, image): | |
| if self.dynamic_resolution: | |
| width, height = image.size | |
| if width * height > self.max_pixels: | |
| scale = (width * height / self.max_pixels) ** 0.5 | |
| height, width = int(height / scale), int(width / scale) | |
| height = height // self.height_division_factor * self.height_division_factor | |
| width = width // self.width_division_factor * self.width_division_factor | |
| else: | |
| height, width = self.height, self.width | |
| return height, width | |
| def load_image(self, file_path): | |
| image = Image.open(file_path).convert("RGB") | |
| image = self.crop_and_resize(image, *self.get_height_width(image)) | |
| return image | |
| def load_data(self, file_path): | |
| return self.load_image(file_path) | |
| def __getitem__(self, data_id): | |
| data = self.data[data_id % len(self.data)].copy() | |
| for key in self.data_file_keys: | |
| if key in data: | |
| path = os.path.join(self.base_path, data[key]) | |
| data[key] = self.load_data(path) | |
| if data[key] is None: | |
| warnings.warn(f"cannot load file {data[key]}.") | |
| return None | |
| return data | |
| def __len__(self): | |
| return len(self.data) * self.repeat | |
| class VideoDataset(torch.utils.data.Dataset): | |
| def __init__( | |
| self, | |
| base_path=None, | |
| metadata_path=None, | |
| num_frames=81, | |
| time_division_factor=4, | |
| time_division_remainder=1, | |
| max_pixels=1920 * 1080, | |
| height=None, | |
| width=None, | |
| height_division_factor=16, | |
| width_division_factor=16, | |
| data_file_keys=("video",), | |
| image_file_extension=("jpg", "jpeg", "png", "webp"), | |
| video_file_extension=("mp4", "avi", "mov", "wmv", "mkv", "flv", "webm"), | |
| repeat=1, | |
| args=None, | |
| ): | |
| if args is not None: | |
| base_path = args.dataset_base_path | |
| metadata_path = args.dataset_metadata_path | |
| height = args.height | |
| width = args.width | |
| max_pixels = args.max_pixels | |
| num_frames = args.num_frames | |
| data_file_keys = args.data_file_keys.split(",") | |
| repeat = args.dataset_repeat | |
| self.base_path = base_path | |
| self.num_frames = num_frames | |
| self.time_division_factor = time_division_factor | |
| self.time_division_remainder = time_division_remainder | |
| self.max_pixels = max_pixels | |
| self.height = height | |
| self.width = width | |
| self.height_division_factor = height_division_factor | |
| self.width_division_factor = width_division_factor | |
| self.data_file_keys = data_file_keys | |
| self.image_file_extension = image_file_extension | |
| self.video_file_extension = video_file_extension | |
| self.repeat = repeat | |
| if height is not None and width is not None: | |
| print("Height and width are fixed. Setting `dynamic_resolution` to False.") | |
| self.dynamic_resolution = False | |
| elif height is None and width is None: | |
| print("Height and width are none. Setting `dynamic_resolution` to True.") | |
| self.dynamic_resolution = True | |
| if metadata_path is None: | |
| print("No metadata. Trying to generate it.") | |
| metadata = self.generate_metadata(base_path) | |
| print(f"{len(metadata)} lines in metadata.") | |
| self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))] | |
| elif metadata_path.endswith(".json"): | |
| with open(metadata_path, "r") as f: | |
| metadata = json.load(f) | |
| self.data = metadata | |
| else: | |
| metadata = pd.read_csv(metadata_path) | |
| self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))] | |
| def generate_metadata(self, folder): | |
| video_list, prompt_list = [], [] | |
| file_set = set(os.listdir(folder)) | |
| for file_name in file_set: | |
| if "." not in file_name: | |
| continue | |
| file_ext_name = file_name.split(".")[-1].lower() | |
| file_base_name = file_name[: -len(file_ext_name) - 1] | |
| if ( | |
| file_ext_name not in self.image_file_extension | |
| and file_ext_name not in self.video_file_extension | |
| ): | |
| continue | |
| prompt_file_name = file_base_name + ".txt" | |
| if prompt_file_name not in file_set: | |
| continue | |
| with open( | |
| os.path.join(folder, prompt_file_name), "r", encoding="utf-8" | |
| ) as f: | |
| prompt = f.read().strip() | |
| video_list.append(file_name) | |
| prompt_list.append(prompt) | |
| metadata = pd.DataFrame() | |
| metadata["video"] = video_list | |
| metadata["prompt"] = prompt_list | |
| return metadata | |
| def crop_and_resize(self, image, target_height, target_width): | |
| width, height = image.size | |
| scale = max(target_width / width, target_height / height) | |
| image = torchvision.transforms.functional.resize( | |
| image, | |
| (round(height * scale), round(width * scale)), | |
| interpolation=torchvision.transforms.InterpolationMode.BILINEAR, | |
| ) | |
| image = torchvision.transforms.functional.center_crop( | |
| image, (target_height, target_width) | |
| ) | |
| return image | |
| def get_height_width(self, image): | |
| if self.dynamic_resolution: | |
| width, height = image.size | |
| if width * height > self.max_pixels: | |
| scale = (width * height / self.max_pixels) ** 0.5 | |
| height, width = int(height / scale), int(width / scale) | |
| height = height // self.height_division_factor * self.height_division_factor | |
| width = width // self.width_division_factor * self.width_division_factor | |
| else: | |
| height, width = self.height, self.width | |
| return height, width | |
| def get_num_frames(self, reader): | |
| num_frames = self.num_frames | |
| if int(reader.count_frames()) < num_frames: | |
| num_frames = int(reader.count_frames()) | |
| while ( | |
| num_frames > 1 | |
| and num_frames % self.time_division_factor | |
| != self.time_division_remainder | |
| ): | |
| num_frames -= 1 | |
| return num_frames | |
| def load_video(self, file_path): | |
| reader = imageio.get_reader(file_path) | |
| num_frames = self.get_num_frames(reader) | |
| frames = [] | |
| for frame_id in range(num_frames): | |
| frame = reader.get_data(frame_id) | |
| frame = Image.fromarray(frame) | |
| frame = self.crop_and_resize(frame, *self.get_height_width(frame)) | |
| frames.append(frame) | |
| reader.close() | |
| return frames | |
| def load_image(self, file_path): | |
| image = Image.open(file_path).convert("RGB") | |
| image = self.crop_and_resize(image, *self.get_height_width(image)) | |
| frames = [image] | |
| return frames | |
| def is_image(self, file_path): | |
| file_ext_name = file_path.split(".")[-1] | |
| return file_ext_name.lower() in self.image_file_extension | |
| def is_video(self, file_path): | |
| file_ext_name = file_path.split(".")[-1] | |
| return file_ext_name.lower() in self.video_file_extension | |
| def load_data(self, file_path): | |
| if self.is_image(file_path): | |
| return self.load_image(file_path) | |
| elif self.is_video(file_path): | |
| return self.load_video(file_path) | |
| else: | |
| return None | |
| def __getitem__(self, data_id): | |
| data = self.data[data_id % len(self.data)].copy() | |
| for key in self.data_file_keys: | |
| if key in data: | |
| path = os.path.join(self.base_path, data[key]) | |
| data[key] = self.load_data(path) | |
| if data[key] is None: | |
| warnings.warn(f"cannot load file {data[key]}.") | |
| return None | |
| return data | |
| def __len__(self): | |
| return len(self.data) * self.repeat | |
| class DiffusionTrainingModule(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def to(self, *args, **kwargs): | |
| for name, model in self.named_children(): | |
| model.to(*args, **kwargs) | |
| return self | |
| def trainable_modules(self): | |
| trainable_modules = filter(lambda p: p.requires_grad, self.parameters()) | |
| return trainable_modules | |
| def trainable_param_names(self): | |
| trainable_param_names = list( | |
| filter( | |
| lambda named_param: named_param[1].requires_grad, | |
| self.named_parameters(), | |
| ) | |
| ) | |
| trainable_param_names = set( | |
| [named_param[0] for named_param in trainable_param_names] | |
| ) | |
| return trainable_param_names | |
| def add_lora_to_model(self, model, target_modules, lora_rank, lora_alpha=None): | |
| if lora_alpha is None: | |
| lora_alpha = lora_rank | |
| lora_config = LoraConfig( | |
| r=lora_rank, lora_alpha=lora_alpha, target_modules=target_modules | |
| ) | |
| model = inject_adapter_in_model(lora_config, model) | |
| return model | |
| def export_trainable_state_dict(self, state_dict, remove_prefix=None): | |
| trainable_param_names = self.trainable_param_names() | |
| state_dict = { | |
| name: param | |
| for name, param in state_dict.items() | |
| if name in trainable_param_names | |
| } | |
| if remove_prefix is not None: | |
| state_dict_ = {} | |
| for name, param in state_dict.items(): | |
| if name.startswith(remove_prefix): | |
| name = name[len(remove_prefix) :] | |
| state_dict_[name] = param | |
| state_dict = state_dict_ | |
| return state_dict | |
| class ModelLogger: | |
| def __init__( | |
| self, output_path, remove_prefix_in_ckpt=None, state_dict_converter=lambda x: x | |
| ): | |
| self.output_path = output_path | |
| self.remove_prefix_in_ckpt = remove_prefix_in_ckpt | |
| self.state_dict_converter = state_dict_converter | |
| def on_step_end(self, loss): | |
| pass | |
| def on_epoch_end(self, accelerator, model, epoch_id): | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| state_dict = accelerator.get_state_dict(model) | |
| state_dict = accelerator.unwrap_model(model).export_trainable_state_dict( | |
| state_dict, remove_prefix=self.remove_prefix_in_ckpt | |
| ) | |
| state_dict = self.state_dict_converter(state_dict) | |
| os.makedirs(self.output_path, exist_ok=True) | |
| path = os.path.join(self.output_path, f"epoch-{epoch_id}.safetensors") | |
| accelerator.save(state_dict, path, safe_serialization=True) | |
| def launch_training_task( | |
| dataset: torch.utils.data.Dataset, | |
| model: DiffusionTrainingModule, | |
| model_logger: ModelLogger, | |
| optimizer: torch.optim.Optimizer, | |
| scheduler: torch.optim.lr_scheduler.LRScheduler, | |
| num_epochs: int = 1, | |
| gradient_accumulation_steps: int = 1, | |
| ): | |
| dataloader = torch.utils.data.DataLoader( | |
| dataset, shuffle=True, collate_fn=lambda x: x[0] | |
| ) | |
| accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps) | |
| model, optimizer, dataloader, scheduler = accelerator.prepare( | |
| model, optimizer, dataloader, scheduler | |
| ) | |
| for epoch_id in range(num_epochs): | |
| for data in tqdm(dataloader): | |
| with accelerator.accumulate(model): | |
| optimizer.zero_grad() | |
| loss = model(data) | |
| accelerator.backward(loss) | |
| optimizer.step() | |
| model_logger.on_step_end(loss) | |
| scheduler.step() | |
| model_logger.on_epoch_end(accelerator, model, epoch_id) | |
| def launch_data_process_task( | |
| model: DiffusionTrainingModule, dataset, output_path="./models" | |
| ): | |
| dataloader = torch.utils.data.DataLoader( | |
| dataset, shuffle=False, collate_fn=lambda x: x[0] | |
| ) | |
| accelerator = Accelerator() | |
| model, dataloader = accelerator.prepare(model, dataloader) | |
| os.makedirs(os.path.join(output_path, "data_cache"), exist_ok=True) | |
| for data_id, data in enumerate(tqdm(dataloader)): | |
| with torch.no_grad(): | |
| inputs = model.forward_preprocess(data) | |
| inputs = { | |
| key: inputs[key] for key in model.model_input_keys if key in inputs | |
| } | |
| torch.save( | |
| inputs, os.path.join(output_path, "data_cache", f"{data_id}.pth") | |
| ) | |
| def wan_parser(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--dataset_base_path", | |
| type=str, | |
| default="", | |
| required=True, | |
| help="Base path of the dataset.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_metadata_path", | |
| type=str, | |
| default=None, | |
| help="Path to the metadata file of the dataset.", | |
| ) | |
| parser.add_argument( | |
| "--max_pixels", | |
| type=int, | |
| default=1280 * 720, | |
| help="Maximum number of pixels per frame, used for dynamic resolution..", | |
| ) | |
| parser.add_argument( | |
| "--height", | |
| type=int, | |
| default=None, | |
| help="Height of images or videos. Leave `height` and `width` empty to enable dynamic resolution.", | |
| ) | |
| parser.add_argument( | |
| "--width", | |
| type=int, | |
| default=None, | |
| help="Width of images or videos. Leave `height` and `width` empty to enable dynamic resolution.", | |
| ) | |
| parser.add_argument( | |
| "--num_frames", | |
| type=int, | |
| default=81, | |
| help="Number of frames per video. Frames are sampled from the video prefix.", | |
| ) | |
| parser.add_argument( | |
| "--data_file_keys", | |
| type=str, | |
| default="image,video", | |
| help="Data file keys in the metadata. Comma-separated.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_repeat", | |
| type=int, | |
| default=1, | |
| help="Number of times to repeat the dataset per epoch.", | |
| ) | |
| parser.add_argument( | |
| "--model_paths", | |
| type=str, | |
| default=None, | |
| help="Paths to load models. In JSON format.", | |
| ) | |
| parser.add_argument( | |
| "--model_id_with_origin_paths", | |
| type=str, | |
| default=None, | |
| help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", type=float, default=1e-4, help="Learning rate." | |
| ) | |
| parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.") | |
| parser.add_argument( | |
| "--output_path", type=str, default="./models", help="Output save path." | |
| ) | |
| parser.add_argument( | |
| "--remove_prefix_in_ckpt", | |
| type=str, | |
| default="pipe.dit.", | |
| help="Remove prefix in ckpt.", | |
| ) | |
| parser.add_argument( | |
| "--trainable_models", | |
| type=str, | |
| default=None, | |
| help="Models to train, e.g., dit, vae, text_encoder.", | |
| ) | |
| parser.add_argument( | |
| "--lora_base_model", | |
| type=str, | |
| default=None, | |
| help="Which model LoRA is added to.", | |
| ) | |
| parser.add_argument( | |
| "--lora_target_modules", | |
| type=str, | |
| default="q,k,v,o,ffn.0,ffn.2", | |
| help="Which layers LoRA is added to.", | |
| ) | |
| parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.") | |
| parser.add_argument( | |
| "--extra_inputs", default=None, help="Additional model inputs, comma-separated." | |
| ) | |
| parser.add_argument( | |
| "--use_gradient_checkpointing_offload", | |
| default=False, | |
| action="store_true", | |
| help="Whether to offload gradient checkpointing to CPU memory.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Gradient accumulation steps.", | |
| ) | |
| parser.add_argument( | |
| "--max_timestep_boundary", | |
| type=float, | |
| default=1.0, | |
| help="Max timestep boundary (for mixed models, e.g., Wan-AI/Wan2.2-I2V-A14B).", | |
| ) | |
| parser.add_argument( | |
| "--min_timestep_boundary", | |
| type=float, | |
| default=0.0, | |
| help="Min timestep boundary (for mixed models, e.g., Wan-AI/Wan2.2-I2V-A14B).", | |
| ) | |
| return parser | |
| def flux_parser(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--dataset_base_path", | |
| type=str, | |
| default="", | |
| required=True, | |
| help="Base path of the dataset.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_metadata_path", | |
| type=str, | |
| default=None, | |
| help="Path to the metadata file of the dataset.", | |
| ) | |
| parser.add_argument( | |
| "--max_pixels", | |
| type=int, | |
| default=1024 * 1024, | |
| help="Maximum number of pixels per frame, used for dynamic resolution..", | |
| ) | |
| parser.add_argument( | |
| "--height", | |
| type=int, | |
| default=None, | |
| help="Height of images. Leave `height` and `width` empty to enable dynamic resolution.", | |
| ) | |
| parser.add_argument( | |
| "--width", | |
| type=int, | |
| default=None, | |
| help="Width of images. Leave `height` and `width` empty to enable dynamic resolution.", | |
| ) | |
| parser.add_argument( | |
| "--data_file_keys", | |
| type=str, | |
| default="image", | |
| help="Data file keys in the metadata. Comma-separated.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_repeat", | |
| type=int, | |
| default=1, | |
| help="Number of times to repeat the dataset per epoch.", | |
| ) | |
| parser.add_argument( | |
| "--model_paths", | |
| type=str, | |
| default=None, | |
| help="Paths to load models. In JSON format.", | |
| ) | |
| parser.add_argument( | |
| "--model_id_with_origin_paths", | |
| type=str, | |
| default=None, | |
| help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", type=float, default=1e-4, help="Learning rate." | |
| ) | |
| parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.") | |
| parser.add_argument( | |
| "--output_path", type=str, default="./models", help="Output save path." | |
| ) | |
| parser.add_argument( | |
| "--remove_prefix_in_ckpt", | |
| type=str, | |
| default="pipe.dit.", | |
| help="Remove prefix in ckpt.", | |
| ) | |
| parser.add_argument( | |
| "--trainable_models", | |
| type=str, | |
| default=None, | |
| help="Models to train, e.g., dit, vae, text_encoder.", | |
| ) | |
| parser.add_argument( | |
| "--lora_base_model", | |
| type=str, | |
| default=None, | |
| help="Which model LoRA is added to.", | |
| ) | |
| parser.add_argument( | |
| "--lora_target_modules", | |
| type=str, | |
| default="q,k,v,o,ffn.0,ffn.2", | |
| help="Which layers LoRA is added to.", | |
| ) | |
| parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.") | |
| parser.add_argument( | |
| "--extra_inputs", default=None, help="Additional model inputs, comma-separated." | |
| ) | |
| parser.add_argument( | |
| "--align_to_opensource_format", | |
| default=False, | |
| action="store_true", | |
| help="Whether to align the lora format to opensource format. Only for DiT's LoRA.", | |
| ) | |
| parser.add_argument( | |
| "--use_gradient_checkpointing", | |
| default=False, | |
| action="store_true", | |
| help="Whether to use gradient checkpointing.", | |
| ) | |
| parser.add_argument( | |
| "--use_gradient_checkpointing_offload", | |
| default=False, | |
| action="store_true", | |
| help="Whether to offload gradient checkpointing to CPU memory.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Gradient accumulation steps.", | |
| ) | |
| return parser | |