|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
from dataclasses import dataclass |
|
|
|
import torch |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.utils import ( |
|
deprecate, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from huggingface_hub import snapshot_download |
|
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, PNDMScheduler |
|
from transformers import PretrainedConfig, AutoTokenizer |
|
import torch.nn as nn |
|
import os, json, PIL |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from diffusers.utils.outputs import BaseOutput |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def json_dump(data_json, json_save_path): |
|
with open(json_save_path, 'w') as f: |
|
json.dump(data_json, f, indent=4) |
|
f.close() |
|
|
|
|
|
def json_load(json_path): |
|
with open(json_path, 'r') as f: |
|
data = json.load(f) |
|
f.close() |
|
return data |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
return CLIPTextModel |
|
if "t5" in model_class.lower(): |
|
from transformers import T5EncoderModel |
|
return T5EncoderModel |
|
if "clap" in model_class.lower(): |
|
from transformers import ClapTextModelWithProjection |
|
return ClapTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
class ConditionAdapter(nn.Module): |
|
def __init__(self, config): |
|
super(ConditionAdapter, self).__init__() |
|
self.config = config |
|
self.proj = nn.Linear(self.config["condition_dim"], self.config["cross_attention_dim"]) |
|
self.norm = torch.nn.LayerNorm(self.config["cross_attention_dim"]) |
|
print(f"INITIATED: ConditionAdapter: {self.config}") |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path): |
|
config_path = os.path.join(pretrained_model_name_or_path, "config.json") |
|
ckpt_path = os.path.join(pretrained_model_name_or_path, "condition_adapter.pt") |
|
config = json.loads(open(config_path).read()) |
|
instance = cls(config) |
|
instance.load_state_dict(torch.load(ckpt_path)) |
|
print(f"LOADED: ConditionAdapter from {pretrained_model_name_or_path}") |
|
return instance |
|
|
|
def save_pretrained(self, pretrained_model_name_or_path): |
|
os.makedirs(pretrained_model_name_or_path, exist_ok=True) |
|
config_path = os.path.join(pretrained_model_name_or_path, "config.json") |
|
ckpt_path = os.path.join(pretrained_model_name_or_path, "condition_adapter.pt") |
|
json_dump(self.config, config_path) |
|
torch.save(self.state_dict(), ckpt_path) |
|
print(f"SAVED: ConditionAdapter {self.config['model_name']} to {pretrained_model_name_or_path}") |
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
LRELU_SLOPE = 0.1 |
|
MAX_WAV_VALUE = 32768.0 |
|
|
|
|
|
class AttrDict(dict): |
|
def __init__(self, *args, **kwargs): |
|
super(AttrDict, self).__init__(*args, **kwargs) |
|
self.__dict__ = self |
|
|
|
|
|
def get_config(config_path): |
|
config = json.loads(open(config_path).read()) |
|
config = AttrDict(config) |
|
return config |
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
def apply_weight_norm(m): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
weight_norm(m) |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size*dilation - dilation)/2) |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.h = h |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__() |
|
self.h = h |
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Generator, self).__init__() |
|
self.h = h |
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
|
|
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) |
|
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
if (k-u) % 2 == 0: |
|
self.ups.append(weight_norm( |
|
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), |
|
k, u, padding=(k-u)//2))) |
|
else: |
|
self.ups.append(weight_norm( |
|
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), |
|
k, u, padding=(k-u)//2+1, output_padding=1))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel//(2**(i+1)) |
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
x = self.conv_pre(x) |
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i*self.num_kernels+j](x) |
|
else: |
|
xs += self.resblocks[i*self.num_kernels+j](x) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, subfolder=None): |
|
if subfolder is not None: |
|
pretrained_model_name_or_path = os.path.join(pretrained_model_name_or_path, subfolder) |
|
config_path = os.path.join(pretrained_model_name_or_path, "config.json") |
|
ckpt_path = os.path.join(pretrained_model_name_or_path, "vocoder.pt") |
|
|
|
config = get_config(config_path) |
|
vocoder = cls(config) |
|
|
|
state_dict_g = torch.load(ckpt_path) |
|
vocoder.load_state_dict(state_dict_g["generator"]) |
|
vocoder.eval() |
|
vocoder.remove_weight_norm() |
|
return vocoder |
|
|
|
@torch.no_grad() |
|
def inference(self, mels, lengths=None): |
|
self.eval() |
|
with torch.no_grad(): |
|
wavs = self(mels).squeeze(1) |
|
|
|
wavs = (wavs.cpu().numpy() * MAX_WAV_VALUE).astype("int16") |
|
|
|
if lengths is not None: |
|
wavs = wavs[:, :lengths] |
|
|
|
return wavs |
|
|
|
|
|
|
|
def normalize_spectrogram( |
|
spectrogram: torch.Tensor, |
|
max_value: float = 200, |
|
min_value: float = 1e-5, |
|
power: float = 1., |
|
) -> torch.Tensor: |
|
|
|
|
|
max_value = np.log(max_value) |
|
min_value = np.log(min_value) |
|
spectrogram = torch.clamp(spectrogram, min=min_value, max=max_value) |
|
data = (spectrogram - min_value) / (max_value - min_value) |
|
|
|
data = torch.pow(data, power) |
|
|
|
data = data.repeat(3, 1, 1) |
|
|
|
data = torch.flip(data, [1]) |
|
|
|
return data |
|
|
|
|
|
def denormalize_spectrogram( |
|
data: torch.Tensor, |
|
max_value: float = 200, |
|
min_value: float = 1e-5, |
|
power: float = 1, |
|
) -> torch.Tensor: |
|
|
|
assert len(data.shape) == 3, "Expected 3 dimensions, got {}".format(len(data.shape)) |
|
|
|
max_value = np.log(max_value) |
|
min_value = np.log(min_value) |
|
|
|
data = torch.flip(data, [1]) |
|
if data.shape[0] == 1: |
|
data = data.repeat(3, 1, 1) |
|
assert data.shape[0] == 3, "Expected 3 channels, got {}".format(data.shape[0]) |
|
data = data[0] |
|
|
|
data = torch.pow(data, 1 / power) |
|
|
|
spectrogram = data * (max_value - min_value) + min_value |
|
|
|
return spectrogram |
|
|
|
@staticmethod |
|
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray: |
|
""" |
|
Convert a PyTorch tensor to a NumPy image. |
|
""" |
|
images = images.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return images |
|
|
|
@staticmethod |
|
def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
if images.shape[-1] == 1: |
|
|
|
pil_images = [PIL.Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
else: |
|
pil_images = [PIL.Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
|
|
def image_add_color(spec_img): |
|
cmap = plt.get_cmap('viridis') |
|
cmap_r = cmap.reversed() |
|
image = cmap(np.array(spec_img)[:,:,0])[:, :, :3] |
|
image = (image - image.min()) / (image.max() - image.min()) |
|
image = PIL.Image.fromarray(np.uint8(image*255)) |
|
return image |
|
|
|
|
|
@dataclass |
|
class PipelineOutput(BaseOutput): |
|
""" |
|
Output class for audio pipelines. |
|
|
|
Args: |
|
audios (`np.ndarray`) |
|
List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
spectrograms: Union[List[np.ndarray], np.ndarray] |
|
audios: Union[List[np.ndarray], np.ndarray] |
|
|
|
|
|
|
|
class AuffusionPipeline(DiffusionPipeline): |
|
|
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
In addition the pipeline inherits the following loading methods: |
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] |
|
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] |
|
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] |
|
|
|
as well as the following saving methods: |
|
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["safety_checker", "feature_extractor", "text_encoder_list", "tokenizer_list", "adapter_list", "vocoder"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
text_encoder_list: Optional[List[Callable]] = None, |
|
tokenizer_list: Optional[List[Callable]] = None, |
|
vocoder: Generator = None, |
|
requires_safety_checker: bool = False, |
|
adapter_list: Optional[List[Callable]] = None, |
|
tokenizer_model_max_length: Optional[int] = 77, |
|
): |
|
super().__init__() |
|
|
|
self.text_encoder_list = text_encoder_list |
|
self.tokenizer_list = tokenizer_list |
|
self.vocoder = vocoder |
|
self.adapter_list = adapter_list |
|
self.tokenizer_model_max_length = tokenizer_model_max_length |
|
|
|
self.register_modules( |
|
vae=vae, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: str = "auffusion/auffusion", |
|
dtype: torch.dtype = torch.float16, |
|
device: str = "cuda", |
|
): |
|
if not os.path.isdir(pretrained_model_name_or_path): |
|
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path) |
|
|
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") |
|
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet") |
|
feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_name_or_path, subfolder="feature_extractor") |
|
scheduler = PNDMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
vocoder = Generator.from_pretrained(pretrained_model_name_or_path, subfolder="vocoder").to(device, dtype) |
|
|
|
text_encoder_list, tokenizer_list, adapter_list = [], [], [] |
|
|
|
condition_json_path = os.path.join(pretrained_model_name_or_path, "condition_config.json") |
|
condition_json_list = json.loads(open(condition_json_path).read()) |
|
|
|
for i, condition_item in enumerate(condition_json_list): |
|
|
|
|
|
text_encoder_path = os.path.join(pretrained_model_name_or_path, condition_item["text_encoder_name"]) |
|
tokenizer = AutoTokenizer.from_pretrained(text_encoder_path) |
|
tokenizer_list.append(tokenizer) |
|
text_encoder_cls = import_model_class_from_model_name_or_path(text_encoder_path) |
|
text_encoder = text_encoder_cls.from_pretrained(text_encoder_path).to(device, dtype) |
|
text_encoder_list.append(text_encoder) |
|
print(f"LOADING CONDITION ENCODER {i}") |
|
|
|
|
|
adapter_path = os.path.join(pretrained_model_name_or_path, condition_item["condition_adapter_name"]) |
|
adapter = ConditionAdapter.from_pretrained(adapter_path).to(device, dtype) |
|
adapter_list.append(adapter) |
|
print(f"LOADING CONDITION ADAPTER {i}") |
|
|
|
|
|
pipeline = cls( |
|
vae=vae, |
|
unet=unet, |
|
text_encoder_list=text_encoder_list, |
|
tokenizer_list=tokenizer_list, |
|
vocoder=vocoder, |
|
adapter_list=adapter_list, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
feature_extractor=feature_extractor, |
|
) |
|
pipeline = pipeline.to(device, dtype) |
|
|
|
return pipeline |
|
|
|
|
|
def to(self, device, dtype=None): |
|
super().to(device, dtype) |
|
|
|
self.vocoder.to(device, dtype) |
|
|
|
for text_encoder in self.text_encoder_list: |
|
text_encoder.to(device, dtype) |
|
|
|
if self.adapter_list is not None: |
|
for adapter in self.adapter_list: |
|
adapter.to(device, dtype) |
|
|
|
return self |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in |
|
several steps. This is useful to save a large amount of memory and to allow the processing of larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
Note that offloading happens on a submodule basis. Memory savings are higher than with |
|
`enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
if self.safety_checker is not None: |
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) |
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
hook = None |
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
if self.safety_checker is not None: |
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
@property |
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
|
|
assert len(self.text_encoder_list) == len(self.tokenizer_list), "Number of text_encoders must match number of tokenizers" |
|
if self.adapter_list is not None: |
|
assert len(self.text_encoder_list) == len(self.adapter_list), "Number of text_encoders must match number of adapters" |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
def get_prompt_embeds(prompt_list, device): |
|
if isinstance(prompt_list, str): |
|
prompt_list = [prompt_list] |
|
|
|
prompt_embeds_list = [] |
|
for prompt in prompt_list: |
|
encoder_hidden_states_list = [] |
|
|
|
|
|
for j in range(len(self.text_encoder_list)): |
|
|
|
input_ids = self.tokenizer_list[j](prompt, return_tensors="pt").input_ids.to(device) |
|
cond_embs = self.text_encoder_list[j](input_ids).last_hidden_state |
|
|
|
if cond_embs.shape[1] < self.tokenizer_model_max_length: |
|
cond_embs = torch.functional.F.pad(cond_embs, (0, 0, 0, self.tokenizer_model_max_length - cond_embs.shape[1]), value=0) |
|
else: |
|
cond_embs = cond_embs[:, :self.tokenizer_model_max_length, :] |
|
|
|
|
|
if self.adapter_list is not None: |
|
cond_embs = self.adapter_list[j](cond_embs) |
|
encoder_hidden_states_list.append(cond_embs) |
|
|
|
prompt_embeds = torch.cat(encoder_hidden_states_list, dim=1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.cat(prompt_embeds_list, dim=0) |
|
return prompt_embeds |
|
|
|
|
|
if prompt_embeds is None: |
|
prompt_embeds = get_prompt_embeds(prompt, device) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
|
|
if negative_prompt is None: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds).to(dtype=prompt_embeds.dtype, device=device) |
|
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt] |
|
negative_prompt_embeds = get_prompt_embeds(negative_prompt, device) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
negative_prompt_embeds = get_prompt_embeds(negative_prompt, device) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
def decode_latents(self, latents): |
|
warnings.warn( |
|
"The decode_latents method is deprecated and will be removed in a future version. Please" |
|
" use VaeImageProcessor instead", |
|
FutureWarning, |
|
) |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = 256, |
|
width: Optional[int] = 1024, |
|
num_inference_steps: int = 100, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pt", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
duration: Optional[float] = 10, |
|
): |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
audio_length = int(duration * 16000) |
|
|
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
|
|
|
|
spectrograms, audios = [], [] |
|
for img in image: |
|
spectrogram = denormalize_spectrogram(img) |
|
audio = self.vocoder.inference(spectrogram, lengths=audio_length)[0] |
|
audios.append(audio) |
|
spectrograms.append(spectrogram) |
|
|
|
|
|
images = pt_to_numpy(image) |
|
images = numpy_to_pil(images) |
|
images = [image_add_color(image) for image in images] |
|
|
|
if not return_dict: |
|
return (images, audios, spectrograms) |
|
|
|
|
|
return PipelineOutput(images=images, audios=audios, spectrograms=spectrograms) |
|
|
|
|
|
|
|
|
|
|