Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
import soundfile as sf
|
| 4 |
from auffusion_pipeline import AuffusionPipeline
|
| 5 |
|
| 6 |
pipeline = AuffusionPipeline.from_pretrained("auffusion/auffusion")
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def infer(prompt, progress=gr.Progress(track_tqdm=True)):
|
| 9 |
|
| 10 |
prompt = prompt
|
|
@@ -14,6 +23,80 @@ def infer(prompt, progress=gr.Progress(track_tqdm=True)):
|
|
| 14 |
|
| 15 |
return f"{prompt}.wav"
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
css="""
|
| 18 |
div#col-container{
|
| 19 |
margin: 0 auto;
|
|
@@ -40,24 +123,45 @@ with gr.Blocks(css=css) as demo:
|
|
| 40 |
</a>
|
| 41 |
</div>
|
| 42 |
""")
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
demo.queue().launch(show_api=False, show_error=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch, os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
import soundfile as sf
|
| 7 |
from auffusion_pipeline import AuffusionPipeline
|
| 8 |
|
| 9 |
pipeline = AuffusionPipeline.from_pretrained("auffusion/auffusion")
|
| 10 |
|
| 11 |
+
# ——
|
| 12 |
+
|
| 13 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
| 14 |
+
from converter import load_wav, mel_spectrogram, normalize_spectrogram, denormalize_spectrogram, Generator, get_mel_spectrogram_from_audio
|
| 15 |
+
from utils import pad_spec, image_add_color, torch_to_pil, normalize, denormalize
|
| 16 |
+
|
| 17 |
def infer(prompt, progress=gr.Progress(track_tqdm=True)):
|
| 18 |
|
| 19 |
prompt = prompt
|
|
|
|
| 23 |
|
| 24 |
return f"{prompt}.wav"
|
| 25 |
|
| 26 |
+
def infer_img2img(prompt, audio_path):
|
| 27 |
+
|
| 28 |
+
pretrained_model_name_or_path = "auffusion/auffusion-full-no-adapter"
|
| 29 |
+
dtype = torch.float16
|
| 30 |
+
device = "cuda"
|
| 31 |
+
|
| 32 |
+
vocoder = Generator.from_pretrained(pretrained_model_name_or_path, subfolder="vocoder")
|
| 33 |
+
vocoder = vocoder.to(device=device, dtype=dtype)
|
| 34 |
+
|
| 35 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=dtype)
|
| 36 |
+
pipe = pipe.to(device)
|
| 37 |
+
|
| 38 |
+
width_start, width = 0, 160
|
| 39 |
+
strength_list = [0.0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7]
|
| 40 |
+
prompt = "aumbulance siren"
|
| 41 |
+
seed = 42
|
| 42 |
+
|
| 43 |
+
# Loading
|
| 44 |
+
audio, sampling_rate = load_wav(audio_path)
|
| 45 |
+
audio, spec = get_mel_spectrogram_from_audio(audio)
|
| 46 |
+
norm_spec = normalize_spectrogram(spec)
|
| 47 |
+
norm_spec = norm_spec[:,:, width_start:width_start+width]
|
| 48 |
+
norm_spec = pad_spec(norm_spec, 1024)
|
| 49 |
+
norm_spec = normalize(norm_spec) # normalize to [-1, 1], because pipeline do not normalize for torch.Tensor input
|
| 50 |
+
|
| 51 |
+
raw_image = image_add_color(torch_to_pil(norm_spec[:,:,:width]))
|
| 52 |
+
|
| 53 |
+
# Generation for different strength
|
| 54 |
+
image_list = []
|
| 55 |
+
audio_list = []
|
| 56 |
+
|
| 57 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 58 |
+
|
| 59 |
+
for strength in strength_list:
|
| 60 |
+
with torch.autocast("cuda"):
|
| 61 |
+
output_spec = pipe(
|
| 62 |
+
prompt=prompt, image=norm_spec, num_inference_steps=100, generator=generator, output_type="pt", strength=strength, guidance_scale=7.5
|
| 63 |
+
).images[0]
|
| 64 |
+
|
| 65 |
+
# add to image_list
|
| 66 |
+
output_spec = output_spec[:, :, :width]
|
| 67 |
+
output_spec_image = torch_to_pil(output_spec)
|
| 68 |
+
color_output_spec_image = image_add_color(output_spec_image)
|
| 69 |
+
image_list.append(color_output_spec_image)
|
| 70 |
+
|
| 71 |
+
# add to audio_list
|
| 72 |
+
denorm_spec = denormalize_spectrogram(output_spec)
|
| 73 |
+
denorm_spec_audio = vocoder.inference(denorm_spec)
|
| 74 |
+
audio_list.append(denorm_spec_audio)
|
| 75 |
+
|
| 76 |
+
# Display
|
| 77 |
+
|
| 78 |
+
# Concat image with different strength & add interval between images with black color
|
| 79 |
+
concat_image_list = []
|
| 80 |
+
for i in range(len(image_list)):
|
| 81 |
+
if i == len(image_list) - 1:
|
| 82 |
+
concat_image_list.append(np.array(image_list[i]))
|
| 83 |
+
else:
|
| 84 |
+
concat_image_list.append(np.concatenate([np.array(image_list[i]), np.ones((256, 20, 3))*0], axis=1))
|
| 85 |
+
|
| 86 |
+
concat_image = np.concatenate(concat_image_list, axis=1)
|
| 87 |
+
concat_image = Image.fromarray(np.uint8(concat_image))
|
| 88 |
+
|
| 89 |
+
### Concat audio
|
| 90 |
+
concat_audio_list = [np.concatenate([audio, np.zeros((1, 16000))], axis=1) for audio in audio_list]
|
| 91 |
+
concat_audio = np.concatenate(concat_audio_list, axis=1)
|
| 92 |
+
|
| 93 |
+
print("audio_path:", audio_path)
|
| 94 |
+
print("width_start:", width_start, "width:", width)
|
| 95 |
+
print("text prompt:", prompt)
|
| 96 |
+
print("strength_list:", strength_list)
|
| 97 |
+
|
| 98 |
+
return concat_audio
|
| 99 |
+
|
| 100 |
css="""
|
| 101 |
div#col-container{
|
| 102 |
margin: 0 auto;
|
|
|
|
| 123 |
</a>
|
| 124 |
</div>
|
| 125 |
""")
|
| 126 |
+
with gr.Tab("Text-to-Audio"):
|
| 127 |
+
prompt = gr.Textbox(label="Prompt")
|
| 128 |
+
submit_btn = gr.Button("Submit")
|
| 129 |
+
audio_out = gr.Audio(label="Audio Ressult")
|
| 130 |
+
|
| 131 |
+
gr.Examples(
|
| 132 |
+
examples = [
|
| 133 |
+
"Rolling thunder with lightning strikes",
|
| 134 |
+
"Two gunshots followed by birds chirping",
|
| 135 |
+
"A train whistle blowing in the distance"
|
| 136 |
+
],
|
| 137 |
+
inputs = [prompt]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
submit_btn.click(
|
| 141 |
+
fn = infer,
|
| 142 |
+
inputs = [prompt],
|
| 143 |
+
outputs = [audio_out]
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
with gr.Tab("Audio-to-Audio"):
|
| 147 |
+
prompt_img2img = gr.Textbox(label="Prompt")
|
| 148 |
+
audio_in_img2img = gr.Audio(label="Audio Reference", type="filepath")
|
| 149 |
+
submit_btn_img2img = gr.Button("Submit")
|
| 150 |
+
audio_out_img2img = gr.Audio(label="Audio Ressult")
|
| 151 |
+
|
| 152 |
+
gr.Examples(
|
| 153 |
+
examples = [
|
| 154 |
+
"Rolling thunder with lightning strikes",
|
| 155 |
+
"Two gunshots followed by birds chirping",
|
| 156 |
+
"A train whistle blowing in the distance"
|
| 157 |
+
],
|
| 158 |
+
inputs = [prompt_img2img]
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
submit_btn_img2img.click(
|
| 162 |
+
fn = infer_img2img,
|
| 163 |
+
inputs = [prompt_img2img],
|
| 164 |
+
outputs = [audio_out_img2img]
|
| 165 |
+
)
|
| 166 |
|
| 167 |
demo.queue().launch(show_api=False, show_error=True)
|