File size: 12,541 Bytes
a26769d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a4bfa1
a26769d
 
 
 
 
 
 
 
7a4bfa1
a26769d
7a4bfa1
a26769d
 
 
 
 
 
 
 
7a4bfa1
 
 
 
 
a26769d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from dataclasses import dataclass, field
from typing import List, Literal, Union

import numpy as np
import torch

from fish_speech.tokenizer import (
    IM_END_TOKEN,
    MODALITY_TOKENS,
    FishTokenizer,
)


def restore_ndarray(obj, to_tensor: bool = False):
    if isinstance(obj, dict) and "__ndarray__" in obj:
        obj = np.frombuffer(obj["data"], dtype=obj["dtype"]).reshape(obj["shape"])

    if to_tensor and isinstance(obj, np.ndarray):
        obj = torch.from_numpy(obj.copy())

    return obj


@dataclass
class BasePart:
    type: Literal["text", "vq", "audio"] | None = None
    cal_loss: bool = False


@dataclass(kw_only=True)
class VQPart(BasePart):
    type = "vq"
    codes: torch.Tensor

    def __post_init__(self: "VQPart"):
        self.type = "vq"
        self.codes = restore_ndarray(self.codes, to_tensor=True)


@dataclass(kw_only=True)
class TextPart(BasePart):
    type = "text"
    text: str | None = None
    tokens: list[int] | None = None

    def __post_init__(self: "TextPart"):
        self.type = "text"
        if self.text is None and self.tokens is None:
            raise ValueError("Either text or tokens must be provided")


@dataclass(kw_only=True)
class AudioPart(BasePart):
    type = "audio"
    features: torch.Tensor

    def __post_init__(self: "AudioPart"):
        self.type = "audio"
        self.features = restore_ndarray(self.features, to_tensor=True)


@dataclass(kw_only=True)
class EncodedMessage:
    tokens: torch.Tensor
    labels: torch.Tensor
    vq_mask_tokens: torch.Tensor | None = None
    vq_mask_labels: torch.Tensor | None = None
    vq_parts: list[torch.Tensor]
    vq_require_losses: torch.Tensor | None = None
    audio_parts: list[torch.Tensor]
    audio_masks: torch.Tensor | None = None
    metadata: dict | None = None


@dataclass
class ContentSequence:
    """
    Flexible sequence of content parts that supports interleaved multimodal format.
    Example format: <|interleave|><|speaker:1|> TEXT AUDIO <|im_end|><|speaker:2|> TEXT AUDIO <|im_end|>
    """

    parts: list[BasePart] = field(default_factory=list)
    modality: Literal["text", "voice", "interleave"] | None = None
    metadata: dict | None = None

    def __init__(
        self: "ContentSequence",
        parts: list[BasePart | dict] | None = None,
        modality: Literal["text", "voice", "interleave"] | None = None,
        metadata: dict | None = None,
    ):
        self.modality = modality
        self.metadata = metadata or {}

        fixed_parts = []
        for part in parts or []:
            if isinstance(part, dict):
                if part["type"] == "vq":
                    part = VQPart(**part)
                elif part["type"] == "audio":
                    part = AudioPart(**part)
                elif part["type"] == "text":
                    part = TextPart(**part)
                else:
                    raise ValueError(f"Unsupported part type: {part['type']}")
            fixed_parts.append(part)

        self.parts = fixed_parts

        # If modality is specified, add it at the beginning if it's not already there
        if self.modality and not (
            len(self.parts) > 0
            and isinstance(self.parts[0], dict) is False
            and isinstance(self.parts[0], TextPart)
            and self.parts[0].text is not None
            and self.parts[0].text.startswith(MODALITY_TOKENS[self.modality])
        ):
            modality_token = MODALITY_TOKENS[self.modality]
            self.parts.insert(0, TextPart(text=modality_token))

    def append(
        self: "ContentSequence",
        part_or_parts: Union[BasePart, List[BasePart]],
        add_end: bool = False,
        speaker: Union[str, int] | None = None,
    ):
        """
        Append a part or list of parts to the sequence.

        Args:
            part_or_parts: A single part or list of parts to add
            add_end: Whether to add the IM_END_TOKEN after these parts
            speaker: Optional speaker identifier (name or ID) to add before the parts
        """
        # Convert single part to list
        parts_to_add = (
            [part_or_parts] if not isinstance(part_or_parts, list) else part_or_parts
        )

        # Add speaker token if specified
        if speaker is not None:
            speaker_token = f"<|speaker:{speaker}|>"
            self.parts.append(TextPart(text=speaker_token))

        # Add all the parts
        self.parts.extend(parts_to_add)

        # Add end token if requested
        if add_end:
            self.parts.append(
                TextPart(text=IM_END_TOKEN, cal_loss=self.parts[-1].cal_loss)
            )

    def encode(
        self: "ContentSequence",
        tokenizer: FishTokenizer,
        add_shift: bool = True,
        ignore_loss_tokens: list[str] = [],
    ) -> EncodedMessage:
        """
        Encode the sequence parts into tokens for the model.

        Args:
            tokenizer: The tokenizer to use
            add_shift: Whether to shift tokens for next-token prediction
            ignore_loss_tokens: List of token strings to ignore when calculating loss

        Returns:
            EncodedMessage with tensors ready for the model
        """
        all_tokens = []
        all_labels = []

        # Multi-modal elements
        vq_parts = []
        vq_masks = []
        vq_require_losses = []

        audio_parts = []
        audio_masks = []

        ignore_loss_token_ids = [tokenizer.get_token_id(i) for i in ignore_loss_tokens]

        for part in self.parts:
            if isinstance(part, TextPart):
                if part.tokens is None:
                    assert part.text is not None
                    tokens = tokenizer.encode(part.text)
                else:
                    tokens = part.tokens

                tokens = torch.tensor(tokens, dtype=torch.int)
            elif isinstance(part, VQPart):
                curr_codes = part.codes.clone().to(torch.int)
                tokens = torch.tensor(
                    [
                        tokenizer.semantic_id_to_token_id[int(i.item())]
                        for i in curr_codes[0].int()
                    ],
                    dtype=torch.int,
                )
                vq_parts.append(curr_codes)
                vq_require_losses.append(part.cal_loss)
            else:
                raise ValueError(f"Unsupported part type: {type(part)}")

            all_tokens.append(tokens)

            # Set masks for different part types
            if isinstance(part, VQPart):
                vq_masks.append(torch.ones_like(tokens, dtype=torch.bool))
                audio_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
            elif isinstance(part, AudioPart):
                vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
                audio_mask = torch.ones_like(tokens, dtype=torch.bool)
                audio_mask[0] = False  # Skip start token
                audio_mask[-1] = False  # Skip end token
                audio_masks.append(audio_mask)
            else:
                vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
                audio_masks.append(torch.zeros_like(tokens, dtype=torch.bool))

            # Set labels based on whether we want to calculate loss for this part
            if part.cal_loss and not isinstance(part, AudioPart):
                all_labels.append(tokens.clone())
            else:
                all_labels.append(torch.full_like(tokens, -100))

        # Concatenate all tensors
        tokens = torch.cat(all_tokens, dim=0)
        labels = torch.cat(all_labels, dim=0)
        vq_masks = torch.cat(vq_masks, dim=0)
        audio_masks = torch.cat(audio_masks, dim=0)
        vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool)

        # Apply shift if needed for next-token prediction
        vq_mask_tokens = vq_masks
        vq_mask_labels = vq_masks

        if add_shift:
            tokens = tokens[:-1]
            labels = labels[1:]
            vq_masks = vq_masks[:-1]
            vq_mask_tokens = vq_mask_tokens[:-1]
            vq_mask_labels = vq_mask_labels[1:]
            audio_masks = audio_masks[:-1]

        # Ignore specified tokens
        for i in ignore_loss_token_ids:
            assert i != -100 and i is not None
            labels[labels == i] = -100

        assert tokens.dtype in [
            torch.int,
            torch.long,
        ], f"Invalid dtype: {tokens.dtype}"

        return EncodedMessage(
            tokens=tokens,
            labels=labels,
            vq_parts=vq_parts,
            vq_mask_tokens=vq_mask_tokens,
            vq_mask_labels=vq_mask_labels,
            vq_require_losses=vq_require_losses,
            audio_parts=audio_parts,
            audio_masks=audio_masks,
            metadata=self.metadata,
        )

    def encode_for_inference(
        self: "ContentSequence",
        tokenizer: FishTokenizer,
        num_codebooks: int,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        encoded = self.encode(tokenizer, add_shift=False)
        tokens = encoded.tokens
        values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
        values[0] = tokens

        if (encoded.vq_parts is None or len(encoded.vq_parts) == 0) and (
            encoded.audio_parts is None or len(encoded.audio_parts) == 0
        ):
            return values, None, None

        audio_parts = audio_masks = None
        if encoded.vq_parts is not None and len(encoded.vq_parts) > 0:
            vq_parts = encoded.vq_parts
            vq_parts = torch.cat(vq_parts, dim=1)
            values[0, encoded.vq_mask_tokens] = (
                vq_parts[0] + tokenizer.semantic_begin_id
            )
            values[1:, encoded.vq_mask_tokens] = vq_parts

        if encoded.audio_parts is not None and len(encoded.audio_parts) > 0:
            audio_parts = torch.cat(encoded.audio_parts, dim=0)
            audio_masks = encoded.audio_masks[None, :]

        return values, audio_masks, audio_parts

    def visualize(
        self: "ContentSequence",
        tokenizer: FishTokenizer,
        ignore_loss_tokens: list[str] = [],
        merge_semantic_tokens: bool = False,
    ):
        """
        Visualize the encoded sequence with color-coded tokens.
        Blue/cyan tokens contribute to loss, green tokens do not.
        """
        encoded = self.encode(
            tokenizer, add_shift=False, ignore_loss_tokens=ignore_loss_tokens
        )

        # Colors for alternating tokens
        colors = {
            "blue": "\033[94m",  # Light blue
            "cyan": "\033[96m",  # Cyan
            "green": "\033[92m",  # Light green
            "dark_green": "\033[32m",  # Dark green
        }
        blue_idx = 0
        green_idx = 0

        def print_in_blue(x):
            nonlocal blue_idx
            color = colors["blue"] if blue_idx % 2 == 0 else colors["cyan"]
            print(f"{color}{x}\033[0m", end="")
            blue_idx += 1

        def print_in_green(x):
            nonlocal green_idx
            color = colors["green"] if green_idx % 2 == 0 else colors["dark_green"]
            print(f"{color}{x}\033[0m", end="")
            green_idx += 1

        def print_semantic_token(x, count):
            val = f"[<|semantic|>x{count}]"
            if x == -100:
                print_in_green(val)
            else:
                print_in_blue(val)

        count_semantic_tokens = 0
        semantic_label = None

        for tok, lab in zip(encoded.tokens, encoded.labels):
            token_id = int(tok.item())

            if merge_semantic_tokens:
                if (
                    tokenizer.semantic_begin_id <= token_id <= tokenizer.semantic_end_id
                    and (semantic_label is None or semantic_label == lab)
                ):
                    count_semantic_tokens += 1
                    semantic_label = lab
                    continue
                elif count_semantic_tokens > 0:
                    print_semantic_token(semantic_label, count_semantic_tokens)
                    count_semantic_tokens = 0
                    semantic_label = None

            val = tokenizer.decode([int(tok.item())])

            if lab == -100:
                print_in_green(val)
            else:
                print_in_blue(val)

        if merge_semantic_tokens and count_semantic_tokens > 0:
            print_semantic_token(semantic_label, count_semantic_tokens)

        print()