Spaces:
Running
on
L4
Running
on
L4
File size: 12,541 Bytes
a26769d 7a4bfa1 a26769d 7a4bfa1 a26769d 7a4bfa1 a26769d 7a4bfa1 a26769d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
from dataclasses import dataclass, field
from typing import List, Literal, Union
import numpy as np
import torch
from fish_speech.tokenizer import (
IM_END_TOKEN,
MODALITY_TOKENS,
FishTokenizer,
)
def restore_ndarray(obj, to_tensor: bool = False):
if isinstance(obj, dict) and "__ndarray__" in obj:
obj = np.frombuffer(obj["data"], dtype=obj["dtype"]).reshape(obj["shape"])
if to_tensor and isinstance(obj, np.ndarray):
obj = torch.from_numpy(obj.copy())
return obj
@dataclass
class BasePart:
type: Literal["text", "vq", "audio"] | None = None
cal_loss: bool = False
@dataclass(kw_only=True)
class VQPart(BasePart):
type = "vq"
codes: torch.Tensor
def __post_init__(self: "VQPart"):
self.type = "vq"
self.codes = restore_ndarray(self.codes, to_tensor=True)
@dataclass(kw_only=True)
class TextPart(BasePart):
type = "text"
text: str | None = None
tokens: list[int] | None = None
def __post_init__(self: "TextPart"):
self.type = "text"
if self.text is None and self.tokens is None:
raise ValueError("Either text or tokens must be provided")
@dataclass(kw_only=True)
class AudioPart(BasePart):
type = "audio"
features: torch.Tensor
def __post_init__(self: "AudioPart"):
self.type = "audio"
self.features = restore_ndarray(self.features, to_tensor=True)
@dataclass(kw_only=True)
class EncodedMessage:
tokens: torch.Tensor
labels: torch.Tensor
vq_mask_tokens: torch.Tensor | None = None
vq_mask_labels: torch.Tensor | None = None
vq_parts: list[torch.Tensor]
vq_require_losses: torch.Tensor | None = None
audio_parts: list[torch.Tensor]
audio_masks: torch.Tensor | None = None
metadata: dict | None = None
@dataclass
class ContentSequence:
"""
Flexible sequence of content parts that supports interleaved multimodal format.
Example format: <|interleave|><|speaker:1|> TEXT AUDIO <|im_end|><|speaker:2|> TEXT AUDIO <|im_end|>
"""
parts: list[BasePart] = field(default_factory=list)
modality: Literal["text", "voice", "interleave"] | None = None
metadata: dict | None = None
def __init__(
self: "ContentSequence",
parts: list[BasePart | dict] | None = None,
modality: Literal["text", "voice", "interleave"] | None = None,
metadata: dict | None = None,
):
self.modality = modality
self.metadata = metadata or {}
fixed_parts = []
for part in parts or []:
if isinstance(part, dict):
if part["type"] == "vq":
part = VQPart(**part)
elif part["type"] == "audio":
part = AudioPart(**part)
elif part["type"] == "text":
part = TextPart(**part)
else:
raise ValueError(f"Unsupported part type: {part['type']}")
fixed_parts.append(part)
self.parts = fixed_parts
# If modality is specified, add it at the beginning if it's not already there
if self.modality and not (
len(self.parts) > 0
and isinstance(self.parts[0], dict) is False
and isinstance(self.parts[0], TextPart)
and self.parts[0].text is not None
and self.parts[0].text.startswith(MODALITY_TOKENS[self.modality])
):
modality_token = MODALITY_TOKENS[self.modality]
self.parts.insert(0, TextPart(text=modality_token))
def append(
self: "ContentSequence",
part_or_parts: Union[BasePart, List[BasePart]],
add_end: bool = False,
speaker: Union[str, int] | None = None,
):
"""
Append a part or list of parts to the sequence.
Args:
part_or_parts: A single part or list of parts to add
add_end: Whether to add the IM_END_TOKEN after these parts
speaker: Optional speaker identifier (name or ID) to add before the parts
"""
# Convert single part to list
parts_to_add = (
[part_or_parts] if not isinstance(part_or_parts, list) else part_or_parts
)
# Add speaker token if specified
if speaker is not None:
speaker_token = f"<|speaker:{speaker}|>"
self.parts.append(TextPart(text=speaker_token))
# Add all the parts
self.parts.extend(parts_to_add)
# Add end token if requested
if add_end:
self.parts.append(
TextPart(text=IM_END_TOKEN, cal_loss=self.parts[-1].cal_loss)
)
def encode(
self: "ContentSequence",
tokenizer: FishTokenizer,
add_shift: bool = True,
ignore_loss_tokens: list[str] = [],
) -> EncodedMessage:
"""
Encode the sequence parts into tokens for the model.
Args:
tokenizer: The tokenizer to use
add_shift: Whether to shift tokens for next-token prediction
ignore_loss_tokens: List of token strings to ignore when calculating loss
Returns:
EncodedMessage with tensors ready for the model
"""
all_tokens = []
all_labels = []
# Multi-modal elements
vq_parts = []
vq_masks = []
vq_require_losses = []
audio_parts = []
audio_masks = []
ignore_loss_token_ids = [tokenizer.get_token_id(i) for i in ignore_loss_tokens]
for part in self.parts:
if isinstance(part, TextPart):
if part.tokens is None:
assert part.text is not None
tokens = tokenizer.encode(part.text)
else:
tokens = part.tokens
tokens = torch.tensor(tokens, dtype=torch.int)
elif isinstance(part, VQPart):
curr_codes = part.codes.clone().to(torch.int)
tokens = torch.tensor(
[
tokenizer.semantic_id_to_token_id[int(i.item())]
for i in curr_codes[0].int()
],
dtype=torch.int,
)
vq_parts.append(curr_codes)
vq_require_losses.append(part.cal_loss)
else:
raise ValueError(f"Unsupported part type: {type(part)}")
all_tokens.append(tokens)
# Set masks for different part types
if isinstance(part, VQPart):
vq_masks.append(torch.ones_like(tokens, dtype=torch.bool))
audio_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
elif isinstance(part, AudioPart):
vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
audio_mask = torch.ones_like(tokens, dtype=torch.bool)
audio_mask[0] = False # Skip start token
audio_mask[-1] = False # Skip end token
audio_masks.append(audio_mask)
else:
vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
audio_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
# Set labels based on whether we want to calculate loss for this part
if part.cal_loss and not isinstance(part, AudioPart):
all_labels.append(tokens.clone())
else:
all_labels.append(torch.full_like(tokens, -100))
# Concatenate all tensors
tokens = torch.cat(all_tokens, dim=0)
labels = torch.cat(all_labels, dim=0)
vq_masks = torch.cat(vq_masks, dim=0)
audio_masks = torch.cat(audio_masks, dim=0)
vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool)
# Apply shift if needed for next-token prediction
vq_mask_tokens = vq_masks
vq_mask_labels = vq_masks
if add_shift:
tokens = tokens[:-1]
labels = labels[1:]
vq_masks = vq_masks[:-1]
vq_mask_tokens = vq_mask_tokens[:-1]
vq_mask_labels = vq_mask_labels[1:]
audio_masks = audio_masks[:-1]
# Ignore specified tokens
for i in ignore_loss_token_ids:
assert i != -100 and i is not None
labels[labels == i] = -100
assert tokens.dtype in [
torch.int,
torch.long,
], f"Invalid dtype: {tokens.dtype}"
return EncodedMessage(
tokens=tokens,
labels=labels,
vq_parts=vq_parts,
vq_mask_tokens=vq_mask_tokens,
vq_mask_labels=vq_mask_labels,
vq_require_losses=vq_require_losses,
audio_parts=audio_parts,
audio_masks=audio_masks,
metadata=self.metadata,
)
def encode_for_inference(
self: "ContentSequence",
tokenizer: FishTokenizer,
num_codebooks: int,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
encoded = self.encode(tokenizer, add_shift=False)
tokens = encoded.tokens
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
values[0] = tokens
if (encoded.vq_parts is None or len(encoded.vq_parts) == 0) and (
encoded.audio_parts is None or len(encoded.audio_parts) == 0
):
return values, None, None
audio_parts = audio_masks = None
if encoded.vq_parts is not None and len(encoded.vq_parts) > 0:
vq_parts = encoded.vq_parts
vq_parts = torch.cat(vq_parts, dim=1)
values[0, encoded.vq_mask_tokens] = (
vq_parts[0] + tokenizer.semantic_begin_id
)
values[1:, encoded.vq_mask_tokens] = vq_parts
if encoded.audio_parts is not None and len(encoded.audio_parts) > 0:
audio_parts = torch.cat(encoded.audio_parts, dim=0)
audio_masks = encoded.audio_masks[None, :]
return values, audio_masks, audio_parts
def visualize(
self: "ContentSequence",
tokenizer: FishTokenizer,
ignore_loss_tokens: list[str] = [],
merge_semantic_tokens: bool = False,
):
"""
Visualize the encoded sequence with color-coded tokens.
Blue/cyan tokens contribute to loss, green tokens do not.
"""
encoded = self.encode(
tokenizer, add_shift=False, ignore_loss_tokens=ignore_loss_tokens
)
# Colors for alternating tokens
colors = {
"blue": "\033[94m", # Light blue
"cyan": "\033[96m", # Cyan
"green": "\033[92m", # Light green
"dark_green": "\033[32m", # Dark green
}
blue_idx = 0
green_idx = 0
def print_in_blue(x):
nonlocal blue_idx
color = colors["blue"] if blue_idx % 2 == 0 else colors["cyan"]
print(f"{color}{x}\033[0m", end="")
blue_idx += 1
def print_in_green(x):
nonlocal green_idx
color = colors["green"] if green_idx % 2 == 0 else colors["dark_green"]
print(f"{color}{x}\033[0m", end="")
green_idx += 1
def print_semantic_token(x, count):
val = f"[<|semantic|>x{count}]"
if x == -100:
print_in_green(val)
else:
print_in_blue(val)
count_semantic_tokens = 0
semantic_label = None
for tok, lab in zip(encoded.tokens, encoded.labels):
token_id = int(tok.item())
if merge_semantic_tokens:
if (
tokenizer.semantic_begin_id <= token_id <= tokenizer.semantic_end_id
and (semantic_label is None or semantic_label == lab)
):
count_semantic_tokens += 1
semantic_label = lab
continue
elif count_semantic_tokens > 0:
print_semantic_token(semantic_label, count_semantic_tokens)
count_semantic_tokens = 0
semantic_label = None
val = tokenizer.decode([int(tok.item())])
if lab == -100:
print_in_green(val)
else:
print_in_blue(val)
if merge_semantic_tokens and count_semantic_tokens > 0:
print_semantic_token(semantic_label, count_semantic_tokens)
print()
|