Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from PIL import Image | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoImageProcessor | |
# import utils | |
import base64 | |
# from datasets import load_metric | |
import evaluate | |
import logging | |
# Only show log messages that are at the ERROR level or above, effectively filtering out any warnings | |
logging.getLogger('transformers').setLevel(logging.ERROR) | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
image_processor = AutoImageProcessor.from_pretrained("pstroe/bullinger-general-model") | |
model = VisionEncoderDecoderModel.from_pretrained("pstroe/bullinger-general-model") | |
# Create examples | |
# Get images and respective transcriptions from the examples directory | |
def get_example_data(folder_path="./examples/"): | |
example_data = [] | |
# Get list of all files in the folder | |
all_files = os.listdir(folder_path) | |
# Loop through the file list | |
for file_name in all_files: | |
file_path = os.path.join(folder_path, file_name) | |
# Check if the file is an image (.png) | |
if file_name.endswith(".png"): | |
# Construct the corresponding .txt filename (same name) | |
corresponding_text_file_name = file_name.replace(".png", ".txt") | |
corresponding_text_file_path = os.path.join(folder_path, corresponding_text_file_name) | |
# Initialize to a default value | |
transcription = "Transcription not found." | |
# Try to read the content from the .txt file | |
try: | |
with open(corresponding_text_file_path, "r") as f: | |
transcription = f.read().strip() | |
except FileNotFoundError: | |
pass # If the corresponding .txt file is not found, leave the default value | |
example_data.append([file_path, transcription]) | |
return example_data | |
# From pstroe's script | |
# def compute_metrics(pred): | |
# labels_ids = pred.label_ids | |
# pred_ids = pred.predictions | |
# pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True) | |
# labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id | |
# label_str = processor.batch_decode(labels_ids, skip_special_tokens=True) | |
# cer = cer_metric.compute(predictions=pred_str, references=label_str) | |
# return {"cer": cer} | |
def process_image(image, ground_truth): | |
cer = None | |
# prepare image | |
pixel_values = image_processor(image, return_tensors="pt").pixel_values | |
# generate (no beam search) | |
generated_ids = model.generate(pixel_values) | |
# decode | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
if ground_truth is not None and ground_truth.strip() != "": | |
# Debug: Print lengths before computing metric | |
print("Number of predictions:", len(generated_text)) | |
print("Number of references:", len(ground_truth)) | |
# Check if lengths match | |
if len(generated_text) != len(ground_truth): | |
print("Mismatch in number of predictions and references.") | |
print("Predictions:", generated_text) | |
print("References:", ground_truth) | |
print("\n") | |
cer = cer_metric.compute(predictions=[generated_text], references=[ground_truth]) | |
# cer = f"{cer:.3f}" | |
else: | |
cer = "Ground truth not provided" | |
return generated_text, cer | |
# One way to use .svg files | |
# logo_url = "https://www.bullinger-digital.ch/bullinger-digital.svg" | |
# logo_url = "https://www.cl.uzh.ch/docroot/logos/uzh_logo_e_pos.svg" | |
# header_html = "<img src='data:image/png;base64,{}' class='img-fluid' width='180px'>".format( | |
# utils.img_to_bytes(".uzh_logo_e_pos.svg") | |
# ) | |
# Encode images | |
with open("assets/uzh_logo.png", "rb") as img_file: | |
logo_html = base64.b64encode(img_file.read()).decode('utf-8') | |
with open("assets/bullinger-digital.png", "rb") as img_file: | |
footer_html = base64.b64encode(img_file.read()).decode('utf-8') | |
# App header | |
title = """ | |
<h1 style='text-align: center'> TrOCR: Bullinger Dataset</p> | |
""" | |
description = """ | |
Use of Microsoft's [TrOCR](https://arxiv.org/abs/2109.10282), an encoder-decoder model consisting of an \ | |
image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition \ | |
(OCR) on single-text line images. \ | |
This particular model was fine-tuned on [Bullinger Dataset](https://github.com/pstroe/bullinger-htr) \ | |
as part of the project [Bullinger Digital](https://www.bullinger-digital.ch) | |
([References](https://www.cl.uzh.ch/de/people/team/compling/pstroebel.html#Publications)). | |
* HF `model card`: [pstroe/bullinger-general-model](https://huggingface.co/pstroe/bullinger-general-model) | \ | |
[Flexible Techniques for Automatic Text Recognition of Historical Documents](https://doi.org/10.5167/uzh-234886) | |
""" | |
# articles = """ | |
# <p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a><br> | |
# <a href='https://doi.org/10.5167/uzh-234886'>Flexible Techniques for Automatic Text Recognition of Historical Documents</a><br> | |
# <a href='https://zenodo.org/record/7715357'>Bullingers Briefwechsel zugänglich machen: Stand der Handschriftenerkennung</a></p> | |
# """ | |
# Read .png and the respective .txt files | |
examples = get_example_data() | |
# load_metric() is deprecated | |
# cer_metric = load_metric("cer") | |
# pip install evaluate | |
cer_metric = evaluate.load("cer") | |
with gr.Blocks( | |
theme=gr.themes.Soft(), | |
title="TrOCR Bullinger", | |
) as demo: | |
gr.HTML( | |
f""" | |
<div style='display: flex; justify-content: left; width: 100%;'> | |
<img src='data:image/png;base64,{logo_html}' class='img-fluid' width='200px'> | |
</div> | |
""" | |
) | |
#174x60 | |
title = gr.HTML(title) | |
description = gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(variant="panel"): | |
input = gr.components.Image(type="pil", label="Input image:") | |
with gr.Row(): | |
btn_clear = gr.Button(value="Clear") | |
button = gr.Button(value="Submit") | |
with gr.Column(variant="panel"): | |
output = gr.components.Textbox(label="Generated text:") | |
ground_truth = gr.components.Textbox(value="", placeholder="Provide the ground truth, if available.", label="Ground truth:") | |
cer_output = gr.components.Textbox(label="CER:") | |
with gr.Row(): | |
with gr.Accordion(label="Choose an example from test set:", open=False): | |
gr.Examples( | |
examples=examples, | |
inputs = [input, ground_truth], | |
label=None, | |
) | |
with gr.Row(): | |
gr.HTML( | |
f""" | |
<div style="display: flex; align-items: center; justify-content: center"> | |
<img src="data:image/png;base64,{footer_html}" style="width: 150px; height: 60px; object-fit: contain; margin-right: 5px; margin-bottom: 5px"> | |
<p style="font-size: 13px"> | |
| Institut für Computerlinguistik, Universität Zürich, 2023 | |
</p> | |
</div> | |
""" | |
) | |
#383x85 | |
button.click(process_image, inputs=[input, ground_truth], outputs=[output, cer_output]) | |
btn_clear.click(lambda: [None, "", "", ""], outputs=[input, output, ground_truth, cer_output]) | |
# Try to force light mode | |
js = """ | |
function () { | |
gradioURL = window.location.href | |
if (!gradioURL.endsWith('?__theme=light')) { | |
window.location.replace(gradioURL + '?__theme=light'); | |
} | |
}""" | |
demo.load(_js=js) | |
if __name__ == "__main__": | |
demo.launch(favicon_path="icon.png") | |