Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,18 @@
|
|
7 |
import spaces
|
8 |
|
9 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import random
|
11 |
import uuid
|
12 |
import gradio as gr
|
@@ -28,25 +40,20 @@ from gradio import themes
|
|
28 |
from image_gen_aux import UpscaleWithModel
|
29 |
#from diffusers.models.attention_processor import AttnProcessor2_0
|
30 |
|
31 |
-
torch.backends.cuda.matmul.allow_tf32 =
|
32 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
33 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
34 |
-
torch.backends.cudnn.allow_tf32 =
|
35 |
torch.backends.cudnn.deterministic = False
|
36 |
-
torch.backends.cudnn.benchmark =
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
torch.set_float32_matmul_precision("highest")
|
41 |
-
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
|
42 |
-
|
43 |
-
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
44 |
FTP_HOST = "1ink.us"
|
45 |
FTP_USER = "ford442"
|
46 |
FTP_PASS = os.getenv("FTP_PASS")
|
47 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
48 |
|
49 |
-
|
50 |
DESCRIPTIONXX = """
|
51 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester A) ⚡⚡⚡⚡
|
52 |
"""
|
@@ -116,7 +123,7 @@ def load_and_prepare_model():
|
|
116 |
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
117 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
118 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
119 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler'
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
121 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
122 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
@@ -214,7 +221,8 @@ def load_and_prepare_model():
|
|
214 |
#pipe.unet.set_default_attn_processor()
|
215 |
|
216 |
#**** BETTER WAY ****#
|
217 |
-
pipe.to(device, torch.bfloat16)
|
|
|
218 |
#**** BETTER WAY ****#
|
219 |
|
220 |
#pipe.to(device)
|
@@ -326,7 +334,8 @@ def generate_30(
|
|
326 |
#gc.collect()
|
327 |
torch.set_float32_matmul_precision("medium")
|
328 |
with torch.no_grad():
|
329 |
-
|
|
|
330 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
331 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
332 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
@@ -382,7 +391,8 @@ def generate_60(
|
|
382 |
#gc.collect()
|
383 |
torch.set_float32_matmul_precision("medium")
|
384 |
with torch.no_grad():
|
385 |
-
|
|
|
386 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
387 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
388 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
@@ -438,7 +448,8 @@ def generate_90(
|
|
438 |
#gc.collect()
|
439 |
torch.set_float32_matmul_precision("medium")
|
440 |
with torch.no_grad():
|
441 |
-
|
|
|
442 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
443 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
444 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
7 |
import spaces
|
8 |
|
9 |
import os
|
10 |
+
|
11 |
+
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
12 |
+
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
13 |
+
alloc_conf_parts = [
|
14 |
+
'expandable_segments:True',
|
15 |
+
'pinned_use_background_threads:True' # Specific to pinned memory.
|
16 |
+
]
|
17 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
|
18 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
19 |
+
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
20 |
+
|
21 |
+
|
22 |
import random
|
23 |
import uuid
|
24 |
import gradio as gr
|
|
|
40 |
from image_gen_aux import UpscaleWithModel
|
41 |
#from diffusers.models.attention_processor import AttnProcessor2_0
|
42 |
|
43 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
44 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
45 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
46 |
+
torch.backends.cudnn.allow_tf32 = True
|
47 |
torch.backends.cudnn.deterministic = False
|
48 |
+
torch.backends.cudnn.benchmark = True
|
49 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
50 |
+
torch.backends.cuda.preferred_linalg_library="cusolver"
|
|
|
51 |
torch.set_float32_matmul_precision("highest")
|
|
|
|
|
|
|
52 |
FTP_HOST = "1ink.us"
|
53 |
FTP_USER = "ford442"
|
54 |
FTP_PASS = os.getenv("FTP_PASS")
|
55 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
56 |
|
|
|
57 |
DESCRIPTIONXX = """
|
58 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester A) ⚡⚡⚡⚡
|
59 |
"""
|
|
|
123 |
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
124 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
125 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
126 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler') #,beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=False)
|
127 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
128 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
129 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
|
|
221 |
#pipe.unet.set_default_attn_processor()
|
222 |
|
223 |
#**** BETTER WAY ****#
|
224 |
+
#pipe.to(device, torch.bfloat16)
|
225 |
+
pipe.to(device)
|
226 |
#**** BETTER WAY ****#
|
227 |
|
228 |
#pipe.to(device)
|
|
|
334 |
#gc.collect()
|
335 |
torch.set_float32_matmul_precision("medium")
|
336 |
with torch.no_grad():
|
337 |
+
upscalea = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
338 |
+
upscale = upscaler(upscalea, tiling=True, tile_width=256, tile_height=256)
|
339 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
340 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
341 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
391 |
#gc.collect()
|
392 |
torch.set_float32_matmul_precision("medium")
|
393 |
with torch.no_grad():
|
394 |
+
upscalea = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
395 |
+
upscale = upscaler(upscalea, tiling=True, tile_width=256, tile_height=256)
|
396 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
397 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
398 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
448 |
#gc.collect()
|
449 |
torch.set_float32_matmul_precision("medium")
|
450 |
with torch.no_grad():
|
451 |
+
upscalea = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
452 |
+
upscale = upscaler(upscalea, tiling=True, tile_width=256, tile_height=256)
|
453 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
454 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
455 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|