|
|
|
|
|
|
|
|
|
|
|
|
|
import spaces |
|
import os |
|
import random |
|
import uuid |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
from transformers import CLIPTextModelWithProjection, CLIPTextModel |
|
from typing import Tuple |
|
import paramiko |
|
import datetime |
|
from gradio import themes |
|
from image_gen_aux import UpscaleWithModel |
|
from ip_adapter import IPAdapterXL |
|
from huggingface_hub import snapshot_download |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False |
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False |
|
torch.backends.cudnn.allow_tf32 = False |
|
torch.backends.cudnn.deterministic = False |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
|
|
torch.set_float32_matmul_precision("highest") |
|
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1") |
|
os.environ["SAFETENSORS_FAST_GPU"] = "1" |
|
|
|
FTP_HOST = "1ink.us" |
|
FTP_USER = "ford442" |
|
FTP_PASS = os.getenv("FTP_PASS") |
|
FTP_DIR = "1ink.us/stable_diff/" |
|
|
|
DESCRIPTIONXX = """ |
|
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 IP Adapter ⚡⚡⚡⚡ |
|
""" |
|
|
|
examples = [ |
|
|
|
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw", |
|
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw", |
|
] |
|
|
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
|
|
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) |
|
|
|
device = torch.device("cuda:0") |
|
|
|
style_list = [ |
|
{ |
|
"name": "3840 x 2160", |
|
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "2560 x 1440", |
|
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "HD+", |
|
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Style Zero", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
DEFAULT_STYLE_NAME = "Style Zero" |
|
STYLE_NAMES = list(styles.keys()) |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
repo_id = "ford442/SDXL-IP_ADAPTER" |
|
subfolder = "image_encoder" |
|
subfolder2 = "ip_adapter" |
|
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model") |
|
local_folder = os.path.join(local_repo_path, subfolder) |
|
local_folder2 = os.path.join(local_repo_path, subfolder2) |
|
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") |
|
|
|
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0")) |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
if style_name in styles: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
else: |
|
p, n = styles[DEFAULT_STYLE_NAME] |
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
def load_and_prepare_model(): |
|
|
|
vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
|
|
|
|
|
|
|
|
'John6666/uber-realistic-porn-merge-xl-urpmxl-v6final-sdxl', |
|
add_watermarker=False, |
|
|
|
|
|
token=HF_TOKEN, |
|
text_encoder=None, |
|
text_encoder_2=None, |
|
vae=None, |
|
) |
|
pipe.vae=vaeX |
|
pipe.to(device=device, dtype=torch.bfloat16) |
|
pipe.vae.set_default_attn_processor() |
|
print(f'Pipeline: ') |
|
print(f'image_processor: {pipe.image_processor}') |
|
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}') |
|
pipe.watermark=None |
|
pipe.safety_checker=None |
|
return pipe |
|
|
|
|
|
pipe = load_and_prepare_model() |
|
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device) |
|
text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True).to(device=device, dtype=torch.bfloat16) |
|
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' " |
|
|
|
def upload_to_ftp(filename): |
|
try: |
|
transport = paramiko.Transport((FTP_HOST, 22)) |
|
destination_path=FTP_DIR+filename |
|
transport.connect(username = FTP_USER, password = FTP_PASS) |
|
sftp = paramiko.SFTPClient.from_transport(transport) |
|
sftp.put(filename, destination_path) |
|
sftp.close() |
|
transport.close() |
|
print(f"Uploaded {filename} to FTP server") |
|
except Exception as e: |
|
print(f"FTP upload error: {e}") |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name,optimize=False,compress_level=0) |
|
return unique_name |
|
|
|
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp): |
|
filename= f'IP_{timestamp}.txt' |
|
with open(filename, "w") as f: |
|
f.write(f"Realvis 5.0 IP Adapter \n") |
|
f.write(f"Date/time: {timestamp} \n") |
|
f.write(f"Prompt: {prompt} \n") |
|
f.write(f"Steps: {num_inference_steps} \n") |
|
f.write(f"Guidance Scale: {guidance_scale} \n") |
|
f.write(f"SPACE SETUP: \n") |
|
f.write(f"Use Model Dtype: no \n") |
|
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n") |
|
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n") |
|
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n") |
|
upload_to_ftp(filename) |
|
|
|
def display_image(file): |
|
if file is not None: |
|
return Image.open(file.name) |
|
else: |
|
return None |
|
|
|
@spaces.GPU(duration=40) |
|
def generate_30( |
|
prompt: str = "", |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
style_selection: str = "", |
|
width: int = 768, |
|
height: int = 768, |
|
guidance_scale: float = 4, |
|
num_inference_steps: int = 125, |
|
latent_file = gr.File(), |
|
latent_file_2 = gr.File(), |
|
latent_file_3 = gr.File(), |
|
latent_file_4 = gr.File(), |
|
latent_file_5 = gr.File(), |
|
text_scale: float = 1.0, |
|
ip_scale: float = 1.0, |
|
latent_file_1_scale: float = 1.0, |
|
latent_file_2_scale: float = 1.0, |
|
latent_file_3_scale: float = 1.0, |
|
latent_file_4_scale: float = 1.0, |
|
latent_file_5_scale: float = 1.0, |
|
samples=1, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
pipe.text_encoder=text_encoder |
|
pipe.text_encoder_2=text_encoder_2 |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device='cuda').manual_seed(seed) |
|
if latent_file is not None: |
|
sd_image_a = Image.open(latent_file.name).convert('RGB') |
|
sd_image_a.resize((height,width), Image.LANCZOS) |
|
if latent_file_2 is not None: |
|
sd_image_b = Image.open(latent_file_2.name).convert('RGB') |
|
sd_image_b.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_b = None |
|
if latent_file_3 is not None: |
|
sd_image_c = Image.open(latent_file_3.name).convert('RGB') |
|
sd_image_c.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_c = None |
|
if latent_file_4 is not None: |
|
sd_image_d = Image.open(latent_file_4.name).convert('RGB') |
|
sd_image_d.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_d = None |
|
if latent_file_5 is not None: |
|
sd_image_e = Image.open(latent_file_5.name).convert('RGB') |
|
sd_image_e.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_e = None |
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename= f'rv_IP_{timestamp}.png' |
|
print("-- using image file --") |
|
print('-- generating image --') |
|
sd_image = ip_model.generate( |
|
pil_image_1=sd_image_a, |
|
pil_image_2=sd_image_b, |
|
pil_image_3=sd_image_c, |
|
pil_image_4=sd_image_d, |
|
pil_image_5=sd_image_e, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
text_scale=text_scale, |
|
ip_scale=ip_scale, |
|
scale_1=latent_file_1_scale, |
|
scale_2=latent_file_2_scale, |
|
scale_3=latent_file_3_scale, |
|
scale_4=latent_file_4_scale, |
|
scale_5=latent_file_5_scale, |
|
num_samples=samples, |
|
seed=seed, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
) |
|
sd_image[0].save(filename,optimize=False,compress_level=0) |
|
upload_to_ftp(filename) |
|
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp) |
|
torch.set_float32_matmul_precision("medium") |
|
with torch.no_grad(): |
|
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256) |
|
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS) |
|
downscale_path = f"rvIP_upscale_{timestamp}.png" |
|
downscale1.save(downscale_path,optimize=False,compress_level=0) |
|
upload_to_ftp(downscale_path) |
|
image_paths = [save_image(downscale1)] |
|
else: |
|
print('-- IMAGE REQUIRED --') |
|
return image_paths |
|
|
|
@spaces.GPU(duration=70) |
|
def generate_60( |
|
prompt: str = "", |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
style_selection: str = "", |
|
width: int = 768, |
|
height: int = 768, |
|
guidance_scale: float = 4, |
|
num_inference_steps: int = 125, |
|
latent_file = gr.File(), |
|
latent_file_2 = gr.File(), |
|
latent_file_3 = gr.File(), |
|
latent_file_4 = gr.File(), |
|
latent_file_5 = gr.File(), |
|
text_scale: float = 1.0, |
|
ip_scale: float = 1.0, |
|
latent_file_1_scale: float = 1.0, |
|
latent_file_2_scale: float = 1.0, |
|
latent_file_3_scale: float = 1.0, |
|
latent_file_4_scale: float = 1.0, |
|
latent_file_5_scale: float = 1.0, |
|
samples=1, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
pipe.text_encoder=text_encoder |
|
pipe.text_encoder_2=text_encoder_2 |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device='cuda').manual_seed(seed) |
|
if latent_file is not None: |
|
sd_image_a = Image.open(latent_file.name) |
|
if latent_file_2 is not None: |
|
sd_image_b = Image.open(latent_file_2.name) |
|
sd_image_b.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_b = None |
|
if latent_file_3 is not None: |
|
sd_image_c = Image.open(latent_file_3.name) |
|
sd_image_c.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_c = None |
|
if latent_file_4 is not None: |
|
sd_image_d = Image.open(latent_file_4.name) |
|
sd_image_d.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_d = None |
|
if latent_file_5 is not None: |
|
sd_image_e = Image.open(latent_file_5.name) |
|
sd_image_e.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_e = None |
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename= f'rv_IP_{timestamp}.png' |
|
print("-- using image file --") |
|
print('-- generating image --') |
|
sd_image = ip_model.generate( |
|
pil_image_1=sd_image_a, |
|
pil_image_2=sd_image_b, |
|
pil_image_3=sd_image_c, |
|
pil_image_4=sd_image_d, |
|
pil_image_5=sd_image_e, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
text_scale=text_scale, |
|
ip_scale=ip_scale, |
|
scale_1=latent_file_1_scale, |
|
scale_2=latent_file_2_scale, |
|
scale_3=latent_file_3_scale, |
|
scale_4=latent_file_4_scale, |
|
scale_5=latent_file_5_scale, |
|
num_samples=samples, |
|
seed=seed, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
) |
|
sd_image[0].save(filename,optimize=False,compress_level=0) |
|
upload_to_ftp(filename) |
|
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp) |
|
torch.set_float32_matmul_precision("medium") |
|
with torch.no_grad(): |
|
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256) |
|
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS) |
|
downscale_path = f"rvIP_upscale_{timestamp}.png" |
|
downscale1.save(downscale_path,optimize=False,compress_level=0) |
|
upload_to_ftp(downscale_path) |
|
image_paths = [save_image(downscale1)] |
|
else: |
|
print('-- IMAGE REQUIRED --') |
|
return image_paths |
|
|
|
@spaces.GPU(duration=100) |
|
def generate_90( |
|
prompt: str = "", |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
style_selection: str = "", |
|
width: int = 768, |
|
height: int = 768, |
|
guidance_scale: float = 4, |
|
num_inference_steps: int = 125, |
|
latent_file = gr.File(), |
|
latent_file_2 = gr.File(), |
|
latent_file_3 = gr.File(), |
|
latent_file_4 = gr.File(), |
|
latent_file_5 = gr.File(), |
|
text_scale: float = 1.0, |
|
ip_scale: float = 1.0, |
|
latent_file_1_scale: float = 1.0, |
|
latent_file_2_scale: float = 1.0, |
|
latent_file_3_scale: float = 1.0, |
|
latent_file_4_scale: float = 1.0, |
|
latent_file_5_scale: float = 1.0, |
|
samples=1, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
pipe.text_encoder=text_encoder |
|
pipe.text_encoder_2=text_encoder_2 |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device='cuda').manual_seed(seed) |
|
if latent_file is not None: |
|
sd_image_a = Image.open(latent_file.name) |
|
if latent_file_2 is not None: |
|
sd_image_b = Image.open(latent_file_2.name) |
|
sd_image_b.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_b = None |
|
if latent_file_3 is not None: |
|
sd_image_c = Image.open(latent_file_3.name) |
|
sd_image_c.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_c = None |
|
if latent_file_4 is not None: |
|
sd_image_d = Image.open(latent_file_4.name) |
|
sd_image_d.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_d = None |
|
if latent_file_5 is not None: |
|
sd_image_e = Image.open(latent_file_5.name) |
|
sd_image_e.resize((height,width), Image.LANCZOS) |
|
else: |
|
sd_image_e = None |
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename= f'rv_IP_{timestamp}.png' |
|
print("-- using image file --") |
|
print('-- generating image --') |
|
|
|
sd_image = ip_model.generate( |
|
pil_image_1=sd_image_a, |
|
pil_image_2=sd_image_b, |
|
pil_image_3=sd_image_c, |
|
pil_image_4=sd_image_d, |
|
pil_image_5=sd_image_e, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
text_scale=text_scale, |
|
ip_scale=ip_scale, |
|
scale_1=latent_file_1_scale, |
|
scale_2=latent_file_2_scale, |
|
scale_3=latent_file_3_scale, |
|
scale_4=latent_file_4_scale, |
|
scale_5=latent_file_5_scale, |
|
num_samples=samples, |
|
seed=seed, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
) |
|
sd_image[0].save(filename,optimize=False,compress_level=0) |
|
upload_to_ftp(filename) |
|
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp) |
|
torch.set_float32_matmul_precision("medium") |
|
with torch.no_grad(): |
|
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256) |
|
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS) |
|
downscale_path = f"rvIP_upscale_{timestamp}.png" |
|
downscale1.save(downscale_path,optimize=False,compress_level=0) |
|
upload_to_ftp(downscale_path) |
|
image_paths = [save_image(downscale1)] |
|
else: |
|
print('-- IMAGE REQUIRED --') |
|
return image_paths |
|
|
|
def load_predefined_images1(): |
|
predefined_images1 = [ |
|
"assets/7.png", |
|
"assets/8.png", |
|
"assets/9.png", |
|
"assets/1.png", |
|
"assets/2.png", |
|
"assets/3.png", |
|
"assets/4.png", |
|
"assets/5.png", |
|
"assets/6.png", |
|
] |
|
return predefined_images1 |
|
|
|
css = ''' |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
body { |
|
background-color: green; |
|
} |
|
''' |
|
|
|
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo: |
|
gr.Markdown(DESCRIPTIONXX) |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
text_strength = gr.Slider( |
|
label="Text Strength", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
run_button_30 = gr.Button("Run 30 Seconds", scale=0) |
|
run_button_60 = gr.Button("Run 60 Seconds", scale=0) |
|
run_button_90 = gr.Button("Run 90 Seconds", scale=0) |
|
result = gr.Gallery(label="Result", columns=1, show_label=False) |
|
ip_strength = gr.Slider( |
|
label="Image Strength", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
latent_file = gr.File(label="Image Prompt (Required)", file_types=["image"]) |
|
latent_file_preview = gr.Image(label="Image Prompt Preview", interactive=False) |
|
file_1_strength = gr.Slider( |
|
label="Img 1 %", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
with gr.Column(): |
|
latent_file_2 = gr.File(label="Image Prompt 2 (Optional)", file_types=["image"]) |
|
latent_file_2_preview = gr.Image(label="Image Prompt 2 Preview", interactive=False) |
|
file_2_strength = gr.Slider( |
|
label="Img 2 %", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
with gr.Column(): |
|
latent_file_3 = gr.File(label="Image Prompt 3 (Optional)", file_types=["image"]) |
|
latent_file_3_preview = gr.Image(label="Image Prompt 3 Preview", interactive=False) |
|
file_3_strength = gr.Slider( |
|
label="Img 3 %", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
with gr.Column(): |
|
latent_file_4 = gr.File(label="Image Prompt 4 (Optional)", file_types=["image"]) |
|
latent_file_4_preview = gr.Image(label="Image Prompt 4 Preview", interactive=False) |
|
file_4_strength = gr.Slider( |
|
label="Img 4 %", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
with gr.Column(): |
|
latent_file_5 = gr.File(label="Image Prompt 5 (Optional)", file_types=["image"]) |
|
latent_file_5_preview = gr.Image(label="Image Prompt 5 Preview", interactive=False) |
|
file_5_strength = gr.Slider( |
|
label="Img 5 %", |
|
minimum=0.0, |
|
maximum=16.0, |
|
step=0.01, |
|
value=1.0, |
|
) |
|
style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Quality Style", |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=5, |
|
lines=4, |
|
placeholder="Enter a negative prompt", |
|
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'", |
|
visible=True, |
|
) |
|
samples = gr.Slider( |
|
label="Samples", |
|
minimum=0, |
|
maximum=20, |
|
step=1, |
|
value=1, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=448, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=768, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=448, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=768, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=30, |
|
step=0.1, |
|
value=3.8, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=10, |
|
maximum=1000, |
|
step=10, |
|
value=170, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
cache_examples=False |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
latent_file.change( |
|
display_image, |
|
inputs=[latent_file], |
|
outputs=[latent_file_preview] |
|
) |
|
latent_file_2.change( |
|
display_image, |
|
inputs=[latent_file_2], |
|
outputs=[latent_file_2_preview] |
|
) |
|
latent_file_3.change( |
|
display_image, |
|
inputs=[latent_file_3], |
|
outputs=[latent_file_3_preview] |
|
) |
|
latent_file_4.change( |
|
display_image, |
|
inputs=[latent_file_4], |
|
outputs=[latent_file_4_preview] |
|
) |
|
latent_file_5.change( |
|
display_image, |
|
inputs=[latent_file_5], |
|
outputs=[latent_file_5_preview] |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
run_button_30.click, |
|
], |
|
|
|
fn=generate_30, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
style_selection, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
latent_file, |
|
latent_file_2, |
|
latent_file_3, |
|
latent_file_4, |
|
latent_file_5, |
|
text_strength, |
|
ip_strength, |
|
file_1_strength, |
|
file_2_strength, |
|
file_3_strength, |
|
file_4_strength, |
|
file_5_strength, |
|
samples, |
|
], |
|
outputs=[result], |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
run_button_60.click, |
|
], |
|
|
|
fn=generate_60, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
style_selection, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
latent_file, |
|
latent_file_2, |
|
latent_file_3, |
|
latent_file_4, |
|
latent_file_5, |
|
text_strength, |
|
ip_strength, |
|
file_1_strength, |
|
file_2_strength, |
|
file_3_strength, |
|
file_4_strength, |
|
file_5_strength, |
|
samples, |
|
], |
|
outputs=[result], |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
run_button_90.click, |
|
], |
|
|
|
fn=generate_90, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
style_selection, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
latent_file, |
|
latent_file_2, |
|
latent_file_3, |
|
latent_file_4, |
|
latent_file_5, |
|
text_strength, |
|
ip_strength, |
|
file_1_strength, |
|
file_2_strength, |
|
file_3_strength, |
|
file_4_strength, |
|
file_5_strength, |
|
samples, |
|
], |
|
outputs=[result], |
|
) |
|
|
|
gr.Markdown("### REALVISXL V5.0") |
|
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1()) |
|
|
|
|
|
|
|
|
|
gr.Markdown( |
|
""" |
|
<div style="text-align: justify;"> |
|
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available. |
|
</div> |
|
""") |
|
|
|
gr.Markdown( |
|
""" |
|
<div style="text-align: justify;"> |
|
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. |
|
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>. |
|
</div> |
|
""") |
|
|
|
gr.Markdown( |
|
""" |
|
<div style="text-align: justify;"> |
|
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards. |
|
</div> |
|
""") |
|
|
|
def text_generation(input_text, seed): |
|
full_prompt = "Text Generator Application by ecarbo" |
|
return full_prompt |
|
|
|
title = "Text Generator Demo GPT-Neo" |
|
description = "Text Generator Application by ecarbo" |
|
|
|
if __name__ == "__main__": |
|
demo_interface = demo.queue(max_size=50) |
|
text_gen_interface = gr.Interface( |
|
fn=text_generation, |
|
inputs=[ |
|
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "), |
|
gr.Number(value=10, label="Enter seed number") |
|
], |
|
outputs=gr.Textbox(label="Text Generated"), |
|
title=title, |
|
description=description, |
|
) |
|
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"]) |
|
combined_interface.launch(show_api=False) |