ford442 commited on
Commit
3e625f9
·
verified ·
1 Parent(s): 3f9f0e6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -20,7 +20,7 @@ from typing import Tuple
20
  import paramiko
21
  import datetime
22
  # import cyper
23
- from image_gen_aux import UpscaleWithModel
24
  from huggingface_hub import hf_hub_download
25
 
26
  torch.backends.cuda.matmul.allow_tf32 = False
@@ -85,7 +85,7 @@ neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face
85
 
86
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
87
 
88
- upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
89
 
90
  def load_and_prepare_model():
91
  vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
@@ -233,17 +233,18 @@ def generate(
233
  #image.save(output_image_file,optimize=False,compress_level=0)
234
  #upload_to_ftp(output_image_file)
235
  #upscaler.to(torch.device('cuda'))
236
- with torch.no_grad():
237
- upscale2 = upscaler(image, tiling=True, tile_width=256, tile_height=256)
238
  #timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
239
- print('-- got upscaled image --')
240
- downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
241
- upscale_path = f"Large_Lora_L2_SR{seed}.png"
242
- downscale2.save(upscale_path,optimize=False,compress_level=0)
243
- upload_to_ftp(upscale_path)
 
244
  #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
245
  unique_name = str(uuid.uuid4()) + ".png"
246
- os.symlink(upscale_path, unique_name)
247
  return [unique_name], seed
248
  else:
249
  original_prompt_embeds_cpu = prompt_embeds.cpu()
 
20
  import paramiko
21
  import datetime
22
  # import cyper
23
+ #from image_gen_aux import UpscaleWithModel
24
  from huggingface_hub import hf_hub_download
25
 
26
  torch.backends.cuda.matmul.allow_tf32 = False
 
85
 
86
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
87
 
88
+ #upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
89
 
90
  def load_and_prepare_model():
91
  vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
 
233
  #image.save(output_image_file,optimize=False,compress_level=0)
234
  #upload_to_ftp(output_image_file)
235
  #upscaler.to(torch.device('cuda'))
236
+ #with torch.no_grad():
237
+ # upscale2 = upscaler(image, tiling=True, tile_width=256, tile_height=256)
238
  #timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
239
+ #print('-- got upscaled image --')
240
+ #downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
241
+ #upscale_path = f"Large_Lora_L2_SR{seed}.png"
242
+ #downscale2.save(upscale_path,optimize=False,compress_level=0)
243
+ image.save(output_image_file,optimize=False,compress_level=0)
244
+ upload_to_ftp(output_image_file)
245
  #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
246
  unique_name = str(uuid.uuid4()) + ".png"
247
+ os.symlink(output_image_file, unique_name)
248
  return [unique_name], seed
249
  else:
250
  original_prompt_embeds_cpu = prompt_embeds.cpu()